Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, click here: nccn.org/clinical_trials/physician.html.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise specified.

See NCCN Categories of Evidence and Consensus.

NCCN B-cell Lymphoma Panel Members

Summary of the Guidelines Updates

• Follicular Lymphoma (FOLL-1)
• Marginal Zone Lymphomas (MZL-1)
 ‣ Gastric MALT Lymphoma (MALT-1)
 ‣ Nongastric MALT Lymphoma (NGMLT-1)
 ‣ Nodal Marginal Zone Lymphoma (NODE-1)
 ‣ Splenic Marginal Zone Lymphoma (SPLN-1)
• Mantle Cell Lymphoma (MANT-1)
• Diffuse Large B-Cell Lymphoma (BCEL-1)
• Burkitt Lymphoma (BURK-1)
• AIDS-Related B-Cell Lymphomas (AIDS-1)
• Lymphoblastic Lymphoma (BLAST-1)
• Post-Transplant Lymphoproliferative Disorders (PTLD-1)
• Castleman’s Disease (CD-1)

• Use of Immunophenotyping/Genetic Testing in Differential Diagnosis of Mature B-Cell and NK/T-Cell Neoplasms (NHODG-A)
• Supportive Care for B-cell Lymphomas (NHODG-B)
• Lugano Response Criteria for Non-Hodgkin’s Lymphoma (NHODG-C)
• Principles of Radiation Therapy (NHODG-D)
• Special Considerations for the Use of Small-Molecule Inhibitors (Ibrutinib and Idelalisib) (NHODG-E)

• Primary CNS Lymphoma (See NCCN Guidelines for CNS)
• Waldenström’s Macroglobulinemia/Lymphoplasmacytic Lymphoma (See NCCN Guidelines for WM/LPL)

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2017.
Updates in Version 2.2017 of the NCCN Guidelines for B-cell Lymphomas from Version 1.2017 include:

FOLL-B 1 of 4
- First-line therapy
 - The following regimens were added, each with a category 2A designation
 - Bendamustine + obinutuzumab
 - CHOP + obinutuzumab
 - CVP + obinutuzumab
 - Footnote "c" was added, "The clinical trial evaluating this regimen included obinutuzumab maintenance. The use without maintenance was an extrapolation of the data."
- First-line consolidation or extended dosing (optional)
 - "Obinutuzumab maintenance (1000 mg every 8 weeks for 12 doses)" was added with a category 2A designation.

Gastric MALT Lymphoma
- MALT-4
 - For both H. pylori negative, Lymphoma positive and H. pylori positive Lymphoma positive, options for relapse were added, "If indications for treatment exist, then Ibrutinib or See Second-line and Subsequent Therapy for Follicular Lymphoma (FOLL-B 2 of 4)."
- MALT-5
 - For CR, recurrence post-RT, the link for "See follicular lymphoma indications for treatment (FOLL-4)" was replaced by "If indications for treatment exist, then see First-line Therapy for Follicular Lymphoma (FOLL-B 1 of 4)" followed by options for relapse, "If indications for treatment exist; then Ibrutinib or See Second-line and Subsequent Therapy for Follicular Lymphoma (FOLL-B 2 of 4)."
 - For NR, previous RT, the options for relapse are now included.

Nongastric MALT Lymphoma
- NGMLT-2
 - Stage I, II after systemic recurrence, "manage per advanced-stage FL (FOLL-4)" was replaced by "If indications for treatment and treatment naive, then see First-line for Follicular Lymphoma (FOLL-B 1 of 4) or If indications for treatment and treated with rituximab, then Ibrutinib or See Second-line and Subsequent Therapy for Follicular Lymphoma (FOLL-B 2 of 4)."
 - Stage IV, the option to "manage per advanced-stage FL (FOLL-4)" was replaced by "See First-line for Follicular Lymphoma (FOLL-B 1 of 4)."

Nodal Marginal Zone Lymphoma
- NODE-1
 - After Workup, the link to "manage per NCCN Guidelines for Follicular Lymphoma (FOLL-2)" was replaced by, "For first-line therapy, manage as per Follicular Lymphoma (FOLL-2)" and "For relapse, manage as per FOLL-4 or Ibrutinib."

Splenic Marginal Zone Lymphoma
- SPLN-2
 - After Follow-up, the link for "If progression of disease, manage per advanced-stage FL (FOLL-4)" was replaced by "If indications for treatment and treatment naive, then see First-line for Follicular Lymphoma (FOLL-B 1 of 4) or If indications for treatment and treated with rituximab, then Ibrutinib or See Second-line and Subsequent Therapy for Follicular Lymphoma (FOLL-B 2 of 4)."

Mantle Cell Lymphoma
- MANT-3
 - Stage II bulky, III, IV,
 - Aggressive, for CR after consolidation, the recommendation was clarified, "Consider Rituximab maintenance (category 1)."
- MANT-A 1 of 3
 - Induction therapy, for aggressive therapy,
 - "RDHAP (rituximab, dexamethasone, cisplatin, cytarabine)" was added with a footnote, "Oxaliplatin or carboplatin can also be used."
 - Footnote "b" was added, "Rituximab + ibrutinib can be used as a pre-treatment to limit the number of cycles of RHyperCVAD/rituximab maintenance."
 - First-line consolidation candidate for HDT/ASCR
 - "Rituximab maintenance" was added to high-dose therapy with autologous stem cell rescue" with a category 1 for rituximab maintenance.
 - Second-line therapy
 - "Ibrutinib, lenalidomide, rituximab" was added with a category 2B designation.

Diffuse Large B-Cell Lymphoma
- BCEL-C 1 of 4
 - First-line consolidation (optional)
 - "Lenalidomide maintenance (category 2B) for patients 60–80 y of age" was added.
NCCN Guidelines Version 2.2017 Updates
B-cell Lymphomas

Updates in Version 1.2017 of the NCCN Guidelines for B-cell Lymphomas from Version 3.2017 include:

Global changes
• The new 2017 WHO classification of the Mature B-Cell, T-Cell, and NK-Cell Neoplasms was added.
• Suggested treatment regimen references were updated throughout the guidelines.
• Workup, bullet was revised, "Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)"
• Workup, bullet was revised, "MUGA scan/Echocardiogram or MUGA scan if anthracycline- or anthracenedione-based regimen is indicated."
• For imaging, the target anatomy and the use of contrast was added to CT and whole-body was added to PET/CT as appropriate throughout the guidelines.

General
• The algorithm for "Primary cutaneous diffuse large B-cell lymphoma, leg type" has been included in this guideline (BCEL-B 4 of 4).

Follicular Lymphoma
FOLL-1
• Diagnosis,
 ‣ IHC, "cyclin D1" was moved from Essential to Useful Under Certain Circumstances.
 ‣ Useful Under Certain Circumstances, "1p36, IRF4/MUM1 rearrangements" were added to Karyotype or FISH.
• After Diagnosis, the algorithm is split into 4 different options
 ‣ Typical Follicular Lymphoma, which is directed to Workup on FOLL-2
 ‣ Pediatric-type Follicular Lymphoma, which is directed to the new algorithm on FOLL-7
 ‣ Large B-cell lymphoma with IRF4 rearrangement, which is directed to Diffuse Large B-Cell Lymphomas (BCEL-2)
 ‣ Follicular Lymphoma with 1p36 translocation, which is directed to See FOLL-3 (Clinical stage I, non-bulky or contiguous stage II, non-bulky)
• A footnote was moved into a box for emphasis, "Germinal center or follicular center cell phenotype type is not equivalent to follicular lymphoma and occurs in Burkitt lymphoma and some DLBCL."

FOLL-3
• Stage I, II was separated into
 ‣ Stage I (non-bulky) or contiguous stage II (non-bulky)
 ‣ Stage I (bulky), or contiguous stage II (bulky) or non-contiguous stage II
• Stage I (non-bulky) or contiguous stage II (non-bulky), the initial therapy is ISRT.
• Stage I (bulky), or contiguous stage II (bulky) or non-contiguous stage II, the initial therapy is "immunotherapy ± chemotherapy" or "immunotherapy ± chemotherapy (See FOLL-B) + ISRT (category 2B)" or "observation."

FOLL-5
• After end-of-treatment response, "Progressive disease" was removed and for no response ("NR"), "rebiopsy" was added.

FOLL-6
• Footnote u was added, "If proceeding to an autologous stem cell rescue, consider additional cytoreductive therapy to induce CR prior to transplant."

FOLL-7
• A new treatment algorithm for Pediatric-Type Follicular Lymphoma in Adults was added.

Continued on next page
NCCN Guidelines Version 2.2017 Updates
B-cell Lymphomas

Updates in Version 1.2017 of the NCCN Guidelines for B-cell Lymphomas from Version 3.2017 include:

FOLL-B 1 of 4

- **First-line Therapy**
 - Rituximab, "consider for low tumor burden" was added.
 - Lenalidomide + rituximab was changed from a category 3 to a category 2B recommendation
- **First-line Consolidation or Extended Dosing (optional)**
 - Radioimmunotherapy (after induction with chemotherapy or chemoimmunotherapy) was changed from a category 2A to a category 2B recommendation
- **Second-line and Subsequent Therapy**
 - Bendamustine + obinutuzumab was added with a category 2A designation
 - Idelalisib, "refractory to both alkylator and rituximab" was added.
- **Second-line Consolidation or Extended Dosing**
 - "Obinutuzumab maintenance for rituximab refractory disease (1 g every 8 wks for total of 12 doses)" was changed from a category 2B to a category 2A recommendation.
- **Footnotes,**
 - Footnote c was added, "Rituximab may be appropriate in patients initially observed and with progression of low tumor burden disease not meeting GELF criteria (FOLL-A). Immediate initial therapy with rituximab in patients not meeting GELF criteria has not improved OS (Ardeshna K, et al. Lancet Oncol 2014;15:424-435)."
 - Footnote f was added, "This is based on the PRIMA study for patients with high tumor burden treatment with RCVP and RCHOP. There are no data following other regimens."
 - Footnote was removed, "In combination chemotherapy, addition of rituximab has consistently increased overall response rate, response duration, and progression-free survival. In addition, some studies have demonstrated an overall survival benefit."

Gastric MALT Lymphoma

- **MALT-2**
 - Stage I, or II, H. pylori positive, t(11;18) positive disease, after currently accepted antibiotic therapy to treat H. pylori, the algorithm was revised by removing asymptomatic and symptomatic and adding recommendations for endoscopy restaging and lymphoma positive or negative.

MALT-5

- Footnote t was revised, "Optimal interval for follow-up endoscopy and imaging is not known. At NCCN Member Institutions, follow-up endoscopy and imaging using the modalities performed during workup is driven by symptoms."

MALT-A

- "Staging of Gastric MALT Lymphoma: Comparison of Different Systems" table was updated.

Nongastric MALT Lymphoma

- **NGMLT-1**
 - Workup,
 - Essential, 7th bullet was revised, "Chest/abdominal/pelvic CT and other suspected sites with contrast of diagnostic quality and/or whole-body PET/CT scan." Also for NODE-1 and SPLN-1.
 - Useful in certain circumstances, 4th bullet was revised, "MRI for neurological evaluation or if CT with contrast is contraindicated."
 - Footnote m was revised, "Follow-up includes diagnostic tests and imaging previously used as clinically indicated."

NGMLT-2

- Footnote m was revised, "Follow-up includes diagnostic tests and imaging previously used as clinically indicated."

Splenic Marginal Zone Lymphoma

- **SPLN-2**
 - Hepatitis C negative, Cytopenias, the algorithm was redirected to follow-up rather than observe.
 - Footnote g was revised, "Follow-up includes diagnostic tests and imaging using the same modalities performed during workup as clinically indicated."
NCCN Guidelines Version 2.2017 Updates
B-cell Lymphomas

Updates in Version 1.2017 of the NCCN Guidelines for B-cell Lymphomas from Version 3.2017 include:

Mantle Cell Lymphoma

MANT-2
- Footnote j was added, "Follow-up includes diagnostic tests and imaging using the same modalities performed during workup as clinically indicated." Also for MANT-3.

MANT-3
- Stage II bulky, III, IV,
 - Aggressive, for PR after induction therapy, "Consider second-line therapy to achieve CR" was added in place of a footnote that was removed, "Consider second-line therapy to improve partial response."
 - Indolent, the page is directed to a new treatment algorithm on MANT-4

MANT-A 1 of 3
- For Less aggressive therapy,
 - Lenalidomide + rituximab was added with a category 2A designation
- Second-line therapy
 - Bendamustine, bortezomib, and rituximab was added with a category 2B designation
 - Venetoclax was added with a category 2A designation
 - FC (fludarabine, cyclophosphamide) ± rituximab was changed from a category 2A to a category 3 recommendation
 - PCR (pentostatin, cyclophosphamide, rituximab) was changed from a category 2A to a category 3 recommendation
 - PEPC (prednisone, etoposide, procarbazine, cyclophosphamide) ± rituximab was changed from a category 2A to a category 3 recommendation
 - FCMR (fludarabine, cyclophosphamide, mitoxantrone, rituximab) was removed
 - FMR (fludarabine, mitoxantrone, rituximab) was removed

Diffuse Large B-Cell Lymphoma

BCEL-1
- A link to "Primary Cutaneous B-cell Lymphomas, Leg type, see BCEL-B 4 of 4" was added to the page.
- Footnote h was added, "These are most often CD20 negative and rituximab is not necessary."

BCEL-5
- End-of-Treatment Response,
 - After complete response, the 2nd option was revised, "Consider RT to initially bulky disease or isolated skeletal sites"

BCEL-B 3 of 4
- Double hit lymphoma
 - Definition, 1st bullet was revised, "DLBCL or HGB-NOS (intermediate between DLBCL and BL) with MYC rearrangement in addition to plus BCL2 and/or BCL6 rearrangements..."
 - Treatment, 5th bullet was added, "These patients are at higher risk for CNS involvement (BCEL-A 2 of 2); consider CNS prophylaxis according to institutional standards."

BCEL-C 2 of 4
- Second-line and Subsequent Therapy (non-candidates for high-dose therapy)
 - Gemcitabine, vinorelbine ± rituximab was added with a category 3 designation

Burkitt Lymphoma

BURK-1
- Footnote f was added, "There is an uncommon variant of BL without MYC rearrangement but with 11q aberration. Optimum management of this rare subtype is undefined, though it is most often treated like typical BL."

BURK-2
- Footnote l was added, "Repeat C/A/P CT scan with contrast only as clinically indicated."
Updates in Version 1.2017 of the NCCN Guidelines for B-cell Lymphomas from Version 3.2017 include:

AIDS-Related B-cell Lymphomas

AIDS-2
- Lymphoma associated with Castleman’s disease was revised according to the updated WHO classification as, "HHV8-positive DLBCL, NOS" Also for AIDS-3.

AIDS-3
- Statement was revised, "Antiretrovirals (ARVs) can be administered safely with chemotherapy, but consider highly recommend changing (highly active antiretroviral therapy (HAART)... consultation with an HIV specialist or pharmacist is important to optimize compatibility. With continued development of new ARVs, effective alternatives are often available to patients when the existing ARVs are expected to affect metabolism of or share toxicities with chemotherapy. In general, avoidance of zidovudine, cobicistat, and ritonavir is strongly recommended." Also for AIDS-4.
- Bullet regarding CD4 was revised, "If CD4 <50, benefit of rituximab less clear due to increased infectious complications maximize supportive care"
- Footnote f was added, "For dose-adjusted EPOCH + rituximab dosing, see Sparano J, et al. Blood 2010;115:3008-3016."

AIDS-A
- Supportive care, the following bullets were removed,
 - AZT and non-boosted doses of ritonavir should not be administered concurrently due to myelosuppression.
 - While feasible to administer most protease inhibitors concurrently with chemotherapy, consideration of changing to non-protease inhibitor-based regimens is helpful to avoid potential interactions affecting either chemotherapy or antiretroviral metabolism.
- Bullet was added, "Antiretrovirals (ARVs) can be administered safely with chemotherapy but consultation with an HIV specialist or pharmacist is important to optimize compatibility. With continued development of new ARVs, effective alternatives are often available to patients when the existing ARVs are expected to affect metabolism of or share toxicities with chemotherapy. In general, avoidance of zidovudine, cobicistat, and ritonavir is strongly recommended."

Post-Transplant Lymphoproliferative Disorders

PTLD-1
- Workup, Essential
 - 8th bullet was added, "Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)."

PTLD-A
- Sequential chemoimmunotherapy
 - Rituximab was revised by adding dosing after restaging with PET/CT scan as
 - If PET/CT scan negative, rituximab 375 mg/m² every 3 weeks x 4 cycles
 - If PET/CT scan positive, CHOP-21 every 3 weeks x 4 cycles

Castleman’s Disease

CD-3
- Footnote l was added, "Response assessment using the imaging modalities performed during workup (C/A/P CT with contrast or PET/CT)." Also added to CD-4.

Continued on next page
Updates in Version 1.2017 of the NCCN Guidelines for B-cell Lymphomas from Version 3.2017 include:

Use of Immunophenotyping

NHODG-A 4 of 11
• A pathway for "pediatric-type follicular lymphoma (PTFL)" was added to the page.

NHODG-A 6 of 11
• A pathway for "Large B-cell Lymphoma (LBCL) with IRF4 rearrangements" was added to the page.
• The neoplasms list of large B-cells was updated to reflect the recently updated WHO classification.

NHODG-A 10 of 11
• A pathway for "Primary cutaneous acral CD8-positive T-cell lymphoma" was added to the page.

Supportive Care for B-Cell Lymphomas

NHODG-B 1 of 3
• Footnote a was added, "There are data to support that fixed-dose rasburicase is very effective in adult patients."

NHODG-B 3 of 3
• A bullet regarding Rare Complications of Monoclonal Antibody Therapy was added, "Rare complications such as mucocutaneous reactions including paraneoplastic pemphigus, Steven-Johnson syndrome, lichenoid dermatitis, vesiculobullous dermatitis, and toxic epidermal necrolysis can occur. Expert consultation with dermatology is recommended."

Principles of Radiation Therapy

NHODG-D 3 of 4
• Recommendations related to T-cell lymphomas were removed.

Special Considerations for the Use of Small-Molecule Inhibitors (Ibrutinib and Idelalisib)

NHODG-E
• Recommendations related to CLL were removed.
• Idelalisib, 3rd bullet was added, "CMV: monitor per institutional guidelines or consult with Infectious Disease."
DIAGNOSIS

ESSENTIAL:

- Hematopathology review of all slides with at least one paraffin block representative of the tumor. Rebiopsy if consult material is nondiagnostic.
- An FNA or core needle biopsy alone is not generally suitable for the initial diagnosis of lymphoma. In certain circumstances, when a lymph node is not easily accessible for excisional or incisional biopsy, a combination of core biopsy and FNA biopsies in conjunction with appropriate ancillary techniques for the differential diagnosis (immunohistochemistry, flow cytometry, PCR for IGHV and TCR gene rearrangements, and FISH for major translocations) may be sufficient for diagnosis. Histologic grading cannot be performed on an FNA.
- Adequate immunophenotyping to establish diagnosis
 - IHC panel: CD20, CD3, CD5, CD10, BCL2, BCL6, CD21, or CD23, with or without
 - Cell surface marker analysis by flow cytometry: kappa/lambda, CD19, CD20, CD5, CD23, CD10

USEFUL UNDER CERTAIN CIRCUMSTANCES:

- Molecular analysis to detect: antigen receptor gene rearrangements; BCL2 rearrangements
- Karyotype or FISH: t(14;18); BCL6, 1p36, IRF4/MUM1 rearrangements
- IHC panel: Ki-67; IRF4/MUM1 for FL grade 3, cyclin D1

Follicular Lymphoma

aFollicular lymphoma (FL), grade 1-2. FL, grade 3 is an area of controversy. The distinction between follicular grade 3a and 3b has not been shown to have clinical significance to date. However, controversy exists regarding management of FL grade 3. Some may treat FL grade 3a as FL and others may treat it as diffuse large B-cell lymphoma (DLBCL). FL, grade 3b is commonly treated according to the NCCN Diffuse Large B-Cell Lymphoma Guideline (BCEL-1). Any area of DLBCL in a FL of any grade should be diagnosed and treated as a DLBCL.

bTypical immunophenotype: CD10+, BCL2+, CD23+/-, CD43-, CD5-, CD20+, BCL6+. Rare cases of follicular lymphoma may be CD10- or BCL2-.

cSee Use of Immunophenotyping/Genetic Testing in Differential Diagnosis of Mature B-Cell and NK/T-Cell Neoplasms (NHODG-A).

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
WORKUP

ESSENTIAL:
- Physical exam: attention to node-bearing areas, including Waldeyer’s ring, and to size of liver and spleen
- Performance status
- B symptoms
- CBC, differential, platelets
- LDH
- Beta-2-microglobulin
- Comprehensive metabolic panel
- Hepatitis B testing
- Chest/abdominal/pelvic (C/A/P) CT with contrast of diagnostic quality and/or whole-body PET/CT scan (PET/CT scan essential if RT for stage I, II disease planned)
- Bone marrow biopsy + aspirate to document clinical stage I-II disease
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

USEFUL IN SELECTED CASES:
- Echocardiogram or MUGA scan if anthracycline or anthracenedione-based regimen is indicated
- Neck CT with contrast
- Uric acid
- Discussion of fertility issues and sperm banking
- SPEP and/or quantitative immunoglobulin levels
- Hepatitis C testing

<a> Follicular lymphoma (FL), grade 1-2. FL, grade 3 is an area of controversy. The distinction between follicular grade 3a and 3b has not been shown to have clinical significance to date. However, controversy exists regarding management of FL grade 3. Some may treat FL grade 3a as follicular lymphoma and others may treat it as diffuse large B-cell lymphoma (DLBCL). FL, grade 3b is commonly treated according to the NCCN Diffuse Large B-Cell Lymphoma Guideline (BCEL-1). Any area of DLBCL in a FL of any grade should be diagnosed and treated as a DLBCL.

<i>Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist. Bilateral or unilateral provided core biopsy is >1.6 cm. If radioimmunotherapy is considered, bilateral cores are recommended and the pathologist should provide the percent of overall cellular elements and the percent of cellular elements involved in the marrow. If observation is initial therapy, bone marrow biopsy may be deferred.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2017
Follicular Lymphoma (grade 1-2)

<table>
<thead>
<tr>
<th>STAGE</th>
<th>INITIAL THERAPY</th>
<th>RESPONSE TO THERAPY</th>
<th>FOLLOW-UP</th>
</tr>
</thead>
</table>
| Stage I, II (bulky), or contiguous stage II (bulky) or non-contiguous stage II | Immunotherapy ± chemotherapy (See FOLL-B)
or
Immunotherapy ± chemotherapy (See FOLL-B) + ISRT (category 2B)
| CR or PR | CR or PR | See Stage III, IV (FOLL-4) | |
| Stage I (non-bulky) or contiguous stage II (non-bulky) | Observation | | |
| | ISRT | NR | See Stage III, IV (FOLL-4) |

See Principles of Radiation Therapy (NHODG-D)

Observation may be appropriate in circumstances where potential toxicity of involved-site RT (ISRT) outweighs potential clinical benefit.

Initiation of chemotherapy or more extended RT can improve failure-free survival (FFS), but has not been shown to improve overall survival. These are options for therapy.

See Lugano Response Criteria for Non-Hodgkin’s Lymphoma (NHODG-C)

Imaging should be performed whenever there are clinical indications. For surveillance imaging, see Discussion for consensus imaging recommendations.

Clinical
- H&P and labs every 3–6 mo for 5 y and then annually or as clinically indicated
- Surveillance imaging
 - Up to 2 y post completion of treatment: C/A/P CT scan with contrast no more than every 6 mo
 - >2 y: No more than annually

Progression of disease
- For transformation, see FOLL-6

Note:
All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Follicular Lymphoma (grade 1-2)

Stage III, IV

Indications for treatment:
- Candidate for clinical trial
- Symptoms
- Threatened end-organ function
- Cytopения secondary to lymphoma
- Bulky disease
- Steady progression

No indication
- Observe (category 1)

Indication present
- Consider PET/CT scan

Clinical
- H&P and labs every 3–6 mo for 5 y and then annually or as clinically indicated
- Surveillance imaging
 - Up to 2 y: C/A/P CT scan with contrast no more than every 6 mo
 - >2 y: CT scan no more than annually

See end-of-treatment response (FOLL-5)

See Suggested Regimens (FOLL-B)
- See Management of Transformation (FOLL-6)
- See GELF criteria (FOLL-A)

See monoclonal antibody and viral reactivation (NHODG-B)

See Lugano Response Criteria for Non-Hodgkin's Lymphoma (NHODG-C)

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2017

Follicular Lymphoma (grade 1-2)

END-OF-TREATMENT RESPONSE

- **CR or PR**
 - Consider PET/CT (preferred) or C/A/P CT scan with contrast
 - Consolidation or extended therapy (See FOLL-B) or Observe

- **NR**
 - Rebiopsy
 - For transformation, see FOLL-6

OPTIONAL EXTENDED THERAPY

- Rebiopsy
 - For transformation, see FOLL-6

FOLLOW-UP

- Clinical
 - H&P and labs every 3–6 mo for 5 y and then annually or as clinically indicated
 - Surveillance imaging
 - Up to 2 y post completion of treatment: C/A/P CT scan with contrast no more than every 6 mo
 - >2 y: CT scan no more than annually

- Progression disease
 - Up to 2 y post completion of treatment: C/A/P CT scan with contrast no more than every 6 mo
 - >2 y: CT scan no more than annually

- For transformation, see FOLL-6

INDICATIONS FOR TREATMENT

- Candidate for clinical trial
- Symptoms
- Threatened end-organ function
- Cytopenia secondary to lymphoma
- Bulky disease
- Steady progression

END-OF-TREATMENT RESPONSE

- No indication
 - Observe

SECOND-LINE AND SUBSEQUENT THERAPY

- See Suggested Regimens (FOLL-B) or Clinical trial or Local RT (palliation of locally symptomatic disease)

INDICATION PRESENT

- Consider PET/CT scan

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

1 See Principles of Radiation Therapy (NHODG-D).

3 Imaging should be performed whenever there are clinical indications. For surveillance imaging, see Discussion for consensus imaging recommendations.

4 Consider possibility of histologic transformation in patients with progressive disease, especially if LDH levels are rising, single site is growing disproportionately, extranodal disease develops, or there are new B symptoms. If clinical suspicion of transformation, FDG-PET may help identify areas suspicious for transformation. FDG-PET scan demonstrating marked heterogeneity or sites of intense FDG avidity may indicate transformation, and biopsy should be directed biopsy at the most FDG avid area. Functional imaging does not replace biopsy to diagnose transformation. If transformation is histologically confirmed, treat with anthracycline-based therapy. See Management of Transformation (FOLL-6).

5 See GELF criteria (FOLL-A).

6 A PET-positive PR is associated with a shortened PFS (See Discussion); however, additional treatment at this juncture has not been shown to change outcome.
Histologic Transformation to Diffuse Large B-Cell Lymphoma

- **Multiple prior therapies**
 - Clinical trial
 - or Radioimmunotherapy
 - or Chemotherapy (See BCEL-C, selection of treatment must be highly individualized taking into account prior treatment history) ± rituximab ± ISRT
 - or ISRT
 - or Best supportive care (See NCCN Guidelines for Palliative Care)

- **Minimal\(^s\) or no prior chemotherapy**
 - Chemotherapy (anthracycline-based chemotherapy preferred unless contraindicated) (See BCEL-C, first-line therapy) + rituximab ± ISRT\(^t\)
 - Consider PET/CT (preferred) or C/A/P CT scan with contrast
 - Consider high-dose therapy with autologous stem cell rescue or allogeneic stem cell transplant\(^v\)

- **Responsive disease**
 - Consider high-dose therapy with autologous stem cell rescue or allogeneic stem cell transplant\(^v\)
 - Observation
 - or Clinical trial
 - or Consider high-dose therapy with autologous stem cell rescue or allogeneic stem cell transplant\(^v\)

- **CR\(^m\)**
 - Consider PET/CT (preferred) or C/A/P CT scan with contrast
 - Consider high-dose therapy with autologous stem cell rescue or allogeneic stem cell transplant\(^v\)
 - or Clinical trial
 - or Consider radioimmunotherapy
 - or Consider ISRT

- **PR\(^m, u\)**
 - Consider high-dose therapy with autologous stem cell rescue or allogeneic stem cell transplant\(^v\)
 - or Clinical trial
 - or Radioimmunotherapy or see BCEL-C (Second-line therapy)
 - or Palliative or best supportive care

- **NR or progressive disease\(^m\)**
 - Consider high-dose therapy with autologous stem cell rescue or allogeneic stem cell transplant\(^v\)
 - or Clinical trial
 - or Radioimmunotherapy or see BCEL-C (Second-line therapy)
 - or Palliative or best supportive care

\(^m\)See Lugano Response Criteria for Non-Hodgkin's Lymphoma (NHODG-C).
\(^t\)For pathologic evaluation of histologic transformation, FISH for BCL2 rearrangement [(14;18)], and MYC rearrangements [(8;14) or variants, (8;22), (2;8)].
\(^s\)Involved-site RT alone or one course of single-agent therapy including rituximab.
\(^v\)If locoregional transformation, consider adding RT.
\(^u\)If proceeding to an autologous stem cell rescue, consider additional cytoreductive therapy to induce CR prior to transplant.
\(^v\)Strongly recommend this treatment be given in the context of a clinical trial.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Pediatric-Type Follicular Lymphoma in Adults

Pathologic and Clinical Presentation

- **Morphology:** expansile follicles, effacement of architecture, absence of diffuse area
- **Expresses:** BCL6, CD10, ±MUM1/IRF4 (~20%)
- **Proliferation index (Ki-67/MIB-1) >30%**
- **No rearrangement of BCL2, BCL6, MUM1/IRF4**

- **Clinical**
 - **Localized disease (stage I)>>**
 - **Advanced stage (III/IV)**
 - **Head and neck (cervical, submandibular, submental, postauricular, or periparotid lymph nodes) or less common inguinal lymph nodes**
 - **Male sex predominant**
 - **Younger age than typical FL (though can occur in adults even over age 60)**

Staging Workup

- **PET/CT scan**
- **Bone marrow biopsy**

Treatment

- **Stage I, II**
 - **Excision (preferred)**
 - **ISRT**
 - **RCHOP**

- **Restage post-RT or chemotherapy with PET/CT**

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)

See monoclonal antibody and viral reactivation (NHODG-B)

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

In young patients with localized disease that lack BCL2 expression or t(14;18), consider entity of pediatric-type FL. Analysis of BCL6 rearrangement may be useful for evaluating the diagnosis of pediatric-type FL.

See Lugano Response Criteria for Non-Hodgkin’s Lymphoma (NHODG-C).

If the patient has disease >Stage II, it is by definition not PTFL.

Patients have an excellent prognosis, no surveillance imaging is necessary.
Follicular Lymphoma (grade 1-2)

GELF CRITERIA
- Involvement of ≥3 nodal sites, each with a diameter of ≥3 cm
- Any nodal or extranodal tumor mass with a diameter of ≥7 cm
- B symptoms
- Splenomegaly
- Pleural effusions or peritoneal ascites
- Cytopenias (leukocytes <1.0 x 10^9/L and/or platelets <100 x 10^9/L)
- Leukemia (>5.0 x 10^9/L malignant cells)

FLIPI - 1 CRITERIA

<table>
<thead>
<tr>
<th>Age</th>
<th>≥60 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann Arbor stage</td>
<td>III–IV</td>
</tr>
<tr>
<td>Hemoglobin level</td>
<td><12 g/dL</td>
</tr>
<tr>
<td>Serum LDH level</td>
<td>>ULN (upper limit of normal)</td>
</tr>
<tr>
<td>Number of nodal sites</td>
<td>≥5</td>
</tr>
</tbody>
</table>

Risk group according to FLIPI chart

<table>
<thead>
<tr>
<th>Number of factors</th>
<th>Low</th>
<th>Intermediate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–1</td>
<td>2</td>
<td>≥3</td>
</tr>
</tbody>
</table>

© 2007 Dana-Farber Cancer Institute, Inc.
All rights reserved. Permission is hereby granted for copying this image by photocopy or similar process for use in the practice of medicine or for research purposes. No other use is permitted which will infringe the copyright without the express written consent of Dana-Farber Cancer Institute, Inc.

This provides useful prognostic information that may be used to guide therapeutic decisions.

This research was originally published in Blood. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood 2004;104:1258-1265. (c) the American Society of Hematology.

The map is used to determine the number of nodal sites in FLIPI-1 criteria and is different than the conventional Ann Arbor site map.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Follicular Lymphoma (grade 1-2)

SUGGESTED TREATMENT REGIMENS

(in preference order)

First-line Therapy
- Bendamustine + rituximab (category 1)
- Bendamustine + obinutuzumab
- RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) (category 1)
- CHOP + obinutuzumab
- RCVP (rituximab, cyclophosphamide, vincristine, prednisone) (category 1)
- CVP + obinutuzumab
- Rituximab (375 mg/m² weekly for 4 doses) (consider for low tumor burden)
- Lenalidomide + rituximab (category 2B)

First-line Therapy for Elderly or Infirm (if none of the above are expected to be tolerable in the opinion of treating physician)
- Rituximab (preferred) (375 mg/m² weekly for 4 doses)
- Single-agent alkylators (eg, chlorambucil or cyclophosphamide) ± rituximab
- Radioimmunotherapy (category 2B)

First-line Consolidation or Extended Dosing (optional)
- Rituximab maintenance 375 mg/m² one dose every 8 wks for 12 doses for patients initially presenting with high tumor burden (category 1)
- Obinutuzumab maintenance (1000 mg every 8 weeks for 12 doses)
- If initially treated with single-agent rituximab, consolidation with rituximab 375 mg/m² one dose every 8 weeks for 4 doses
- Radioimmunotherapy (after induction with chemotherapy or chemoimmunotherapy) (category 2B)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Follicular Lymphoma (grade 1-2)

SUGGESTED TREATMENT REGIMENSa,b
(in preference order)

Second-line and Subsequent Therapy
- Chemoimmunotherapy (as listed under first-line therapy)
- Rituximab
- Lenalidomide ± rituximab
- Bendamustine + obinutuzumab
- Radioimmunotherapye,f (category 1)
- Idelalisibi (refractory to both alkylator and rituximab)
- Fludarabine + rituximab
- RFNDj,k (rituximab, fludarabine, mitoxantrone, dexamethasone)
- See Second-line Therapy for DLBCL (BCEL-C 2 of 4) without regard to transplantability

Second-line Consolidation or Extended Dosing (optional)
- Rituximab maintenance 375 mg/m2 one dose every 12 wks for 2 years (category 1)
- Obinutuzumab maintenance for rituximab-refractory disease (1 g every 8 wks for total of 12 doses)
- High-dose therapy with autologous stem cell rescue
- Allogeneic stem cell transplant for highly selected patients

For patients with locally bulky or locally symptomatic disease, consider ISRT 4–30 Gy ± additional systemic therapy.

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)
See monoclonal antibody and viral reactivation (NHODG-B)

aSee references for regimens FOLL-B 3 of 4 and FOLL-B 4 of 4.
bThe choice of initial therapy requires consideration of many factors, including age, comorbidities, and future treatment possibilities (eg, HDT with SCR). Therefore, treatment selection is highly individualized.
cSelection of patients requires adequate marrow cellularity >15\% and <25\% involvement of lymphoma in bone marrow, and platelets >100,000. In patients with prior autologous stem cell rescue, referral to a tertiary care center is highly recommended for radioimmunotherapy.
eIf radioimmunotherapy is considered, bilateral cores are recommended and the pathologist should provide the percent of overall cellular elements and the percent of cellular elements involved in the marrow. Cytogenetics ± FISH for known MDS markers. As of 2010, updates suggest a trend towards an increased risk of MDS with RIT.
iSee Special Considerations for the Use of Small-Molecule Inhibitors (Ibrutinib and Idelalisib) (NHODG-E).
jFludarabine-containing regimens negatively impact stem cell mobilization for transplant.
kRFND regimen may be associated with stem cell toxicity and secondary malignancies (see Discussion).

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2017
Follicular Lymphoma (grade 1-2)

SUGGESTED TREATMENT REGIMENS

References

First-line Therapy
Bendamustine + rituximab

Bendamustine + obinutuzumab

RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone)

CHOP + obinutuzumab

RCVP (rituximab, cyclophosphamide, vincristine, prednisone)

CVP + obinutuzumab

Rituximab

Lenalidomide + rituximab

Radioimmunotherapy

First-Line Consolidation or Extended Dosing
Chemoimmunotherapy followed by rituximab maintenance

Extended dosing with rituximab

Obinutuzumab-based chemoimmunotherapy followed by obinutuzumab maintenance

Radioimmunotherapy (after induction with chemotherapy or chemoimmunotherapy)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Continued on next page

Version 2.2017, 02/21/17 © National Comprehensive Cancer Network, Inc. 2017. All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
NCCN Guidelines Version 2.2017
Follicular Lymphoma (grade 1-2)

SUGGESTED TREATMENT REGIMENS

References

Second-line and Subsequent Therapy

Bendamustine + obinutuzumab

Fludarabine + rituximab

Idelalisib

Lenalidomide + rituximab

Radioimmunotherapy

Rituximab

RFND (rituximab, fludarabine, mitoxantrone, dexamethasone)

Second-line Consolidation or Extended Dosing

Rituximab maintenance

Obinutuzumab maintenance for rituximab refractory disease

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma)

- **Gastric**
 - See Diagnosis and Workup (MALT-1)

- **Nongastric/Noncutaneous**
 - See Diagnosis and Workup (NGMLT-1)

- **Cutaneous**
 - See Primary Cutaneous Marginal Zone Lymphoma in NCCN Guidelines for Primary Cutaneous B-Cell Lymphomas

Nodal marginal zone lymphoma

- See Diagnosis and Workup (NODE-1)

Splenic marginal zone lymphoma

- See Diagnosis and Workup (SPLN-1)

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2017
Extranodal Marginal Zone B-Cell Lymphoma
Gastric MALT Lymphoma

DIAGNOSIS

ESSENTIAL:
- Hematopathology review of all slides with at least one paraffin block representative of the tumor. Rebiopsy if consult material is nondiagnostic.a,b
- Diagnosis of gastric MALT lymphoma requires an endoscopic biopsy and an FNA is never adequate.
- Adequate immunophenotyping to establish diagnosisc,d
 - IHC Panel: CD20, CD3, CD5, CD10, BCL2, kappa/lambda, CD21 or CD23, cyclin D1, BCL6
 - with or without
 - Cell surface marker analysis by flow cytometry: kappa/lambda, CD19, CD20, CD5, CD23, CD10
- Helicobacter pylori (H. pylori) stain (gastric), if positive, then PCR or FISH for t(11;18)e

USEFUL UNDER CERTAIN CIRCUMSTANCES:
- Molecular analysis to detect: antigen receptor gene rearrangements; MYD88 mutation status to differentiate WM versus MZL if plasmacytic differentiation present
- Cytogenetics or FISH: t(1;14); t(3;14); t(11;14);f t(11;18)
- FISH or PCR: t(14;18)

a Nondiagnostic atypical lymphoid infiltrates that are H. pylori positive should be rebiopsied to confirm or exclude lymphoma prior to treatment of H. pylori.
b Any area of DLBCL should be treated according to the NCCN Guidelines for Diffuse Large B-Cell Lymphoma (BCEL-1).
c Typical immunophenotype: CD10-, CD5-, CD20+, cyclin D1-, BCL2- follicles.
d See Use of Immunophenotyping/Genetic Testing in Differential Diagnosis of Mature B-Cell and NK/T-Cell Neoplasms (NHODG-A).
e Locally advanced disease is more likely in patients with gastric MALT lymphoma with t(11;18), which is less likely to respond to antibiotics.

WORKUP

ESSENTIAL:
- Physical exam with attention to nongastric sites (eyes, skin)
- Performance status
- CBC, differential, platelets
- Comprehensive metabolic panel
- LDH
- If H. pylori negative by histopathology, then use noninvasive H. pylori testing (stool antigen test, urea breath test, blood antibody test)
- Hepatitis B testingg if rituximab contemplated
- Hepatitis C testing
- C/A/P CT with contrast of diagnostic quality and/or whole-body PET/CT scan (especially if ISRT anticipated)
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

USEFUL UNDER CERTAIN CIRCUMSTANCES:
- Bone marrow biopsy ± aspirate
- Echocardiogram or MUGA scan if anthracycline or anthracyclenedione-based regimen is indicated
- Endoscopy with ultrasound (if available) with multiple biopsies of anatomical sites
- Discussion of fertility issues and sperm banking
- SPEP

If IHC for cyclin D1 is positive, FISH for t(11;14) is not necessary.
g Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.

This is particularly useful for H. pylori-positive cases because the likelihood of tumor response is related to depth of tumor invasion.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Extranodal Marginal Zone B-Cell Lymphoma

Gastric MALT Lymphoma

<table>
<thead>
<tr>
<th>STAGE</th>
<th>INITIAL THERAPY</th>
<th>See monoclonal antibody and viral reactivation (NHODG-B)</th>
<th>Endoscopy for restaging, as per MALT-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I₁, I₂, or II₁, II₂</td>
<td>Currently accepted antibiotic therapy for H. pylori</td>
<td>Evaluate for H. pylori eradication with endoscopy (MALT-3)</td>
<td>ISRT¹,m for persistent disease or Rituximab (if ISRT is contraindicated)</td>
</tr>
<tr>
<td>H. pylori positive</td>
<td>Endoscopy for restaging</td>
<td>Lymphoma positive</td>
<td>See Complete Response on MALT-5</td>
</tr>
<tr>
<td>Stage I₁ or I₂</td>
<td>Currently accepted antibiotic therapy to treat H. pylori</td>
<td>Endoscopy for restaging</td>
<td>Lymphoma negative</td>
</tr>
<tr>
<td>H. pylori positive, t(11;18) positive</td>
<td>ISRT¹,m (preferred) or Rituximab (if ISRT is contraindicated)</td>
<td>Endoscopy for restaging, as per MALT-4</td>
<td></td>
</tr>
<tr>
<td>Stage I₁ or I₂</td>
<td>H. pylori negative</td>
<td>Indications for treatment:</td>
<td></td>
</tr>
<tr>
<td>H. pylori negative</td>
<td></td>
<td>• Candidate for clinical trial</td>
<td></td>
</tr>
<tr>
<td>t(11;18) positive</td>
<td></td>
<td>• Symptoms</td>
<td></td>
</tr>
<tr>
<td>Stage IV (advanced-stage disease uncommon)</td>
<td></td>
<td>• GI bleeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Threatened end-organ function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bulky disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Steady progression</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Patient preference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No indication</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Induction chemo-immunotherapy or Locoregional RT in specific settings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indication present</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Endoscopy for restaging, if evidence of recurrence, manage per Second-line and Subsequent Therapy for Follicular Lymphoma (FOLL-B 2 of 4)</td>
<td></td>
</tr>
</tbody>
</table>

¹See Lugano Staging System for Gastrointestinal Lymphomas (MALT-A).
²Involvement of submucosa or regional lymph nodes are much less likely to respond to antibiotic therapy. If there is persistent disease after evaluation, RT may be considered earlier in the course.
³t(11;18) is a predictor for lack of tumor response (<5%) to antibiotics. Antibiotics are used in these patients to eradicate the H. pylori infection. These patients should be considered for alternative therapy of the lymphoma. Liu H, Ye H, Ruskone-Fourmestraux A, et al. t(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 2002;122:1286-1294.

If negative by both histology and serum antibodies, RT is recommended.

See Principles of Radiation Therapy (NHODG-D).

Given incurability with conventional therapy, consider investigational therapy as first line of treatment.

Surgical resection is generally limited to specific clinical situations (ie, life-threatening hemorrhage).

See First-line Therapy for Follicular Lymphoma (FOLL-B 1 of 4).
3-MONTH RESTAGING AND FOLLOW-UP ENDOSCOPY

AFTER ANTIBIOTICS

H. pylori negative, Lymphoma negative

- Observe

H. pylori negative, Lymphoma positive

- Asymptomatic
 - Observe
 - ISRT^m^{,r,s}

- Symptomatic
 - ISRT^m

H. pylori positive, Lymphoma negative

- H. pylori positive, Lymphoma positive
 - Stable disease
 - Observe for another 3 mo^f or ISRT^m^{,r,s}
 - Progressive or symptomatic disease
 - Second-line antibiotic treatment
 - ISRT^m and second-line antibiotic treatment

^mSee Principles of Radiation Therapy (NHODG-D).
<sup=q>Biopsy to rule out large cell lymphoma. Any area of DLBCL should be treated according to the NCCN Guidelines for Diffuse Large B-Cell Lymphoma (BCEL-1).
<sup>f>Re-evaluation suggests slowly responding disease or asymptomatic nonprogression, continued observation may be warranted. RT can be considered as early as 3 mo after observation but can be prolonged to 18 mo (category 2B).
<sup>s>If patient originally had clinical Stage I_{E2} or Stage II_E, early RT should be considered if there is no response to antibiotics.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
3- to 6-MONTH RESTAGING AND FOLLOW-UP ENDOSCOPY AFTER RT

ADDITIONAL THERAPY

- **H. pylori negative**
 - Lymphoma negative → Observe → See Follow-up Endoscopy (MALT-5)
 - Lymphoma positive → Relapse → See Second-line and Subsequent Therapy for Follicular Lymphoma (FOLL-B 2 of 4)

- **H. pylori positive**
 - Lymphoma negative → Consider antibiotic treatment → See Follow-up Endoscopy (MALT-5)
 - Lymphoma positive → Relapse → See Second-line and Subsequent Therapy for Follicular Lymphoma (FOLL-B 2 of 4)

Restage at 3–6 mo with endoscopy and biopsy after RT

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Biopsy to rule out large cell lymphoma. Any area of DLBCL should be treated according to the NCCN Guidelines for Diffuse Large B-Cell Lymphoma (BCEL-1).
Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See Principles of Radiation Therapy (NHODG-D).

Biopsy to rule out large cell lymphoma. Any area of DLBCL should be treated according to the NCCN Guidelines for Diffuse Large B-Cell Lymphoma (BCEL-1).

Optimal interval for follow-up endoscopy and imaging is not known. At NCCN Member Institutions, follow-up endoscopy and imaging using the modalities performed during workup is driven by symptoms.
Staging of Gastric MALT Lymphoma: Comparison of Different Systems

<table>
<thead>
<tr>
<th>Staging System</th>
<th>Lugano Modification of Ann Arbor Staging System</th>
<th>TNM Staging System Adapted for Gastric Lymphoma</th>
<th>Tumor Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I<sub>E</sub></td>
<td>Confined to GI tract<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>E1</sub> = mucosa, submucosa</td>
<td>I<sub>E</sub></td>
<td>T1 N0 M0</td>
<td>Mucosa, submucosa</td>
</tr>
<tr>
<td>I<sub>E2</sub> = muscularis propria, serosa</td>
<td>I<sub>E</sub></td>
<td>T2 N0 M0</td>
<td>Muscularis propria</td>
</tr>
<tr>
<td></td>
<td>I<sub>E</sub></td>
<td>T3 N0 M0</td>
<td>Serosa</td>
</tr>
<tr>
<td>Stage II<sub>E</sub></td>
<td>Extending into abdomen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II<sub>E1</sub> = local nodal involvement</td>
<td>II<sub>E</sub></td>
<td>T1-3 N1 M0</td>
<td>Perigastric lymph nodes</td>
</tr>
<tr>
<td>II<sub>E2</sub> = distant nodal involvement</td>
<td>II<sub>E</sub></td>
<td>T1-3 N2 M0</td>
<td>More distant regional lymph nodes</td>
</tr>
<tr>
<td>Stage II<sub>E</sub></td>
<td>Penetration of serosa to involve adjacent organs or tissues</td>
<td>II<sub>E</sub></td>
<td>T4 N0 M0</td>
</tr>
<tr>
<td>Stage IV<sup>b</sup></td>
<td>Disseminated extranodal involvement or concomitant supradiaphragmatic nodal involvement</td>
<td>IV</td>
<td>T1-4 N3 M0</td>
</tr>
</tbody>
</table>

^aSingle primary or multiple, noncontiguous.

^bInvolvement of multiple extranodal sites in MALT lymphoma appears to be biologically distinct from multiple extranodal involvement in other lymphomas, and these patients may be managed by treating each site separately with excision or RT. In contrast, cases with disseminated nodal involvement appear to behave more like nodal marginal zone lymphoma or like disseminated follicular lymphoma.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Extranodal Marginal Zone B-Cell Lymphoma
Nongastric MALT Lymphoma

DIAGNOSIS

ESSENTIAL:
- Hematopathology review of all slides with at least one paraffin block representative of the tumor. Rebiopsy if consult material is non-diagnostic.
- Adequate immunophenotyping to establish diagnosis.
- IHC panel: CD20, CD3, CD5, CD10, BCL2, kappa/lambda, CD21 or CD23, cyclin D1 with or without
- Cell surface marker analysis by flow cytometry: kappa/lambda, CD19, CD20, CD5, CD23, CD10

USEFUL UNDER CERTAIN CIRCUMSTANCES:
- Molecular analysis to detect: antigen receptor gene rearrangements; MYD88 mutation status to differentiate WM versus MZL if plasmacytic differentiation present; PCR for t(11;18)
- Cytogenetics or FISH: t(11;18), t(11;14), t(3;14)
- FISH or PCR: t(14;18)

WORKUP

ESSENTIAL:
- Physical exam with performance status
- CBC, differential, platelets
- Comprehensive metabolic panel
- LDH
- Hepatitis B testing if rituximab contemplated
- Hepatitis C testing
- C/A/P CT and other suspected sites with contrast of diagnostic quality and/or whole-body PET/CT scan
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

USEFUL IN SELECTED CASES:
- Echocardiogram or MUGA scan if anthracycline or anthracenedione-based regimen is indicated
- Bone marrow biopsy ± aspirate
- Endoscopy with multiple biopsies of anatomical sites
- MRI with contrast for neurological evaluation or if CT with contrast is contraindicated
- Discussion of fertility issues and sperm banking
- SPEP

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

@Typical sites of extranodal marginal zone lymphoma other than the stomach include the following: bowel (small and large), breast, head and neck, lung, ocular adnexa, ovary, parotid, prostate, and salivary gland. Infectious agents have been reported to be associated with many nongastric sites, but testing for these agents is not required for management.

@This guideline pertains to noncutaneous; for primary cutaneous marginal zone lymphoma, see NCCN Guidelines for Primary Cutaneous B-Cell Lymphomas.

@Typical immunophenotype: CD10-, CD5-, CD20+, CD23-/+, CD43-/+, cyclin D1-, BCL2- follicles.

@See Use of Immunophenotyping/Genetic Testing in Differential Diagnosis of Mature B-cell and NK/T-cell Neoplasms (NHODG-A).

@Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.

@In cases where primary site is thought to be in head/neck or lungs, upper GI endoscopy should be considered.
NCCN Guidelines Version 2.2017
Extranodal Marginal Zone B-Cell Lymphoma
Nongastric MALT Lymphoma

STAGE

<table>
<thead>
<tr>
<th>Stage</th>
<th>INITIAL THERAPY</th>
<th>FOLLOW-UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I-II</td>
<td>ISRT ij (preferred) or Surgery may be considered for certain sites k (lung, breast [lumpectomy], thyroid, colon/small bowel) or Rituximab in selected cases or Observation in selected cases l</td>
<td>Clinical follow-up every 3–6 mo for 5 y and then yearly or as clinically indicated m</td>
</tr>
<tr>
<td>Stage IV g</td>
<td>ISRT j or Observation in selected cases l or Manage per See First-line for Follicular Lymphoma (FOLL-B 1 of 4)</td>
<td>Manage per NCCN Guidelines for Diffuse Large B-Cell Lymphoma (BCEL-1)</td>
</tr>
</tbody>
</table>

MALT lymphomas concurrent large cell transformation

| Manage per NCCN Guidelines for Diffuse Large B-Cell Lymphoma (BCEL-1) | ISRT or Manage per advanced-stage FL (FOLL-4) |

- **Stage Initial Therapy**
 - ISRT ij (preferred)
 - Surgery may be considered for certain sites k (lung, breast [lumpectomy], thyroid, colon/small bowel)
 - Rituximab in selected cases
 - Observation in selected cases l

- **Stage I-II**
 - Positive margins → Consider locoregional RT
 - Negative margins → Observe

- **Stage IV g**
 - ISRT j
 - Observation in selected cases l
 - Manage per See First-line for Follicular Lymphoma (FOLL-B 1 of 4)

Follow-up

- **Local recurrence**
 - Clinical follow-up every 3–6 mo for 5 y and then yearly or as clinically indicated m

- **Systemic recurrence**
 - ISRT or Manage per advanced-stage FL (FOLL-4)
 - • If indications for treatment and treatment naive, then see First-line for Follicular Lymphoma (FOLL-B 1 of 4)
 - • If indications for treatment and treated with rituximab, then Ibrutinib (See NHODG-E)
 - • If indications for treatment and treated with rituximab, then See Second-line and Subsequent Therapy for Follicular Lymphoma (FOLL-B 2 of 4)

gTreatment of each site may be indicated (eg, bilateral conjunctiva) both at diagnosis and at relapse.

hBased on anecdotal responses to antibiotics in ocular and cutaneous marginal zone lymphomas, some physicians will give an empiric course of doxycycline prior to initiating other therapy.

iDose is site dependent with lower dose reserved for eye involvement.

jSee Principles of Radiation Therapy (NHODG-D).

kSurgical excision for adequate diagnosis may be appropriate treatment for disease.

lObservation may be considered for patients whose diagnostic biopsy was excisional, or where RT could result in significant morbidity.

mFollow-up includes diagnostic tests and imaging previously used as clinically indicated.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Nodal Marginal Zone Lymphoma

DIAGNOSIS

ESSENTIAL:
- Hematopathology review of all slides with at least one paraffin block representative of the tumor. Rebiopsy if consult material is nondiagnostic.
- An FNA or core needle biopsy alone is not generally suitable for the initial diagnosis of lymphoma. In certain circumstances, when a lymph node is not easily accessible for excisional or incisional biopsy, a combination of core biopsy and FNA biopsies in conjunction with appropriate ancillary techniques for the differential diagnosis (immunohistochemistry, flow cytometry, PCR for IgH and TCR gene rearrangements, and FISH for major translocations) may be sufficient for diagnosis. Histologic grading cannot be performed on an FNA.
- Adequate immunophenotyping to establish diagnosis.
 - IHC panel: CD20, CD3, CD5, CD10, BCL2, kappa/lambda, CD21 or CD23, cyclin D1 with or without
 - Cell surface marker analysis by flow cytometry: kappa/lambda, CD19, CD20, CD5, CD23, CD10
 - Pediatric nodal marginal zone lymphoma should be considered with localized disease in a young patient.

USEFUL UNDER CERTAIN CIRCUMSTANCES FOR CLARIFICATION OF DIAGNOSIS:
- Molecular analysis to detect: antigen receptor gene rearrangements; MYD88 mutation status to differentiate WM versus MZL if plasmacytic differentiation present; PCR for t(11;18)
- Cytogenetics or FISH: t(11;18), t(1;14), del(13q), del(7q)
- FISH or PCR: t(14;18)

a Nodal MZL is rare and occurs most commonly as spread from extranodal MALT; must also be distinguished from nodal FL, MCL, lymphoplasmacytic lymphoma, and CLL, all of which are more common.

WORKUP

ESSENTIAL:
- Physical exam with performance status
- CBC, differential, platelets
- Comprehensive metabolic panel
- LDH
- Hepatitis B testing if rituximab contemplated
- Hepatitis C testing
- C/A/P CT or other suspected sites with contrast of diagnostic quality and/or whole-body PET/CT scan
- Bone marrow biopsy + aspirate to document clinical stage I-II disease
- Evaluation to rule out extranodal primary sites
 - Neck nodes: ocular, parotid, thyroid, and salivary gland
 - Axillary nodes: lung, breast, and skin
 - Mediastinal/hilar nodes: lung
 - Abdominal nodes: splenic and GI
 - Inguinal/iliac nodes: GI and skin
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

USEFUL IN SELECTED CASES:
- Echocardiogram or MUGA scan if anthracycline or anthracenedione-based regimen is indicated
- Additional imaging as appropriate
- Discussion of fertility issues and sperm banking
- SPEP

For first-line therapy, manage as per
- **Follicular Lymphoma (FOLL-2)**

For relapse, manage as per
- **Follicular Lymphoma (FOLL-4)**
 - or
- **Ibrutinib (See NHODG-E)**

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Splenic Marginal Zone Lymphoma

Diagnosis

ESSENTIAL:
- Hematopathology review of all slides with at least one paraffin block representative of the tumor. Rebiopsy if consult material is non-diagnostic.
- An FNA or core needle biopsy alone is not generally suitable for the initial diagnosis of lymphoma. In certain circumstances, when a lymph node is not easily accessible for excisional or incisional biopsy, a combination of core biopsy and FNA biopsies in conjunction with appropriate ancillary techniques for the differential diagnosis (immunohistochemistry, flow cytometry, PCR for IgH and TCR gene rearrangements, and FISH for major translocations) may be sufficient for diagnosis.
- Adequate immunophenotyping to establish diagnosis
 - IHC panel: CD20, CD3, CD5, CD10, BCL2, kappa/lambda, CD21 or CD23, cyclin D1, IgD, CD43, annexin A1; with or without
 - Cell surface marker analysis by flow cytometry (peripheral blood, bone marrow, or tissue): kappa/lambda, CD19, CD20, CD5, CD23, CD10, CD43, CD103

USEFUL UNDER CERTAIN CIRCUMSTANCES:
- Molecular analysis to detect: antigen receptor gene rearrangements; MYD88 mutation status to differentiate WM versus MZL if plasmacytic differentiation present; BRAF mutation status to differentiate MZL from HCL by IHC or sequencing; PCR for t(11;18)
- Cytogentic or FISH: CLL panel; t(11;18), t(11;14), del(7q)
- FISH or PCR: t(14;18)

Workup

ESSENTIAL:
- Physical exam with performance status
- CBC, differential, platelets
- Comprehensive metabolic panel
- LDH
- Hepatitis B testing\(^d\) if rituximab contemplated
- Hepatitis C testing
- C/A/P CT or other suspected sites with contrast of diagnostic quality and/or whole-body PET/CT scan
- Bone marrow biopsy ± aspirate
- SPEP and/or quantitative immunoglobulin levels
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

USEFUL IN SELECTED CASES:
- Additional imaging as appropriate
- Discussion of fertility issues and sperm banking
- Immunofixation of blood (for elevated immunoglobulins or positive SPEP)
- Cryoglobulins
- Direct Coombs testing

\(^a\) SMZL is most definitively diagnosed at splenectomy, since the immunophenotype is nonspecific and morphologic features on the bone marrow may not be diagnostic. However, the diagnosis of SMZL may be made on the basis of bone marrow ± peripheral blood involvement by small lymphoid cells with immunoglobulin (Ig) light chain restriction that lack characteristic features of other small B-cell neoplasms (CD5, CD10, cyclin D1). Plasmacytoid differentiation with cytoplasmic Ig detectable on paraffin sections may occur. In such cases, the differential diagnosis may include lymphoplasmacytic lymphoma. With a characteristic intrasinusoidal lymphocytic infiltration of the bone marrow, the diagnosis can strongly be suggested on bone marrow biopsy alone, if the immunophenotype is consistent.

\(^b\) Typical immunophenotype: CD10-, CD5-, CD20+, CD23-/+; CD43-/+ and cyclin D1-, BCL2- follicles, annexin A1, CD103- (distinction from hairy cell leukemia) with expression of both IgM and IgD.

\(^c\) See Use of Immunophenotyping/Genetic Testing in Differential Diagnosis of Mature B-Cell and NK/T-Cell Neoplasms (NHODG-A).

\(^d\) Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2017
Splenic Marginal Zone Lymphoma

CLINICAL PRESENTATION

Asymptomatic, without progressive cytopenia, no splenomegaly

MANAGEMENT

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)

See monoclonal antibody and viral reactivation (NHODG-B)

FOLLOW-UP

Observe

Clinical follow-up every 3–6 mo for 5 y and then yearly or as clinically indicated

Recurrence

CLINICAL PRESENTATION

Splenomegaly

Hepatitis C positive

Hepatitis consult

Hepatitis C negative

Assess

No symptoms → Observe

Splenomegaly

• Cytopenias
 • Symptoms → Splenectomy or Rituximab

• No contraindications for treatment of hepatitis → Appropriate treatment → CR/PR

• No response → Clinical follow-up every 3–6 mo for 5 y and then yearly or as clinically indicated

Hepatopathy consult

No contraindications for treatment of hepatitis

Appropriate treatment → CR/PR

Splenectomy or Rituximab

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

ePneumococcal and meningococcal vaccination should be given at least 2 weeks before splenectomy.

gFollow-up includes diagnostic tests and imaging using the same modalities performed during workup as clinically indicated.
Mantle Cell Lymphoma

ESSENTIAL:
- Hematopathology review of all slides with at least one paraffin block representative of the tumor. Rebiopsy if consult material is nondiagnostic.
- An FNA or core needle biopsy alone is not generally suitable for the initial diagnosis of lymphoma. In certain circumstances, when a lymph node is not easily accessible for excisional or incisional biopsy, a combination of core biopsy and FNA biopsies in conjunction with appropriate ancillary techniques for the differential diagnosis (immunohistochemistry, flow cytometry, PCR for IgH and TCR gene rearrangements, and FISH for major translocations) may be sufficient for diagnosis.
- Adequate immunophenotyping to establish diagnosis\(^a,b\)
 - IHC panel: CD20, CD3, CD5, cyclin D1, CD10, CD21, CD23, BCL2, BCL6, Ki-67\(^c\)
 - with or without
 - Cell surface marker analysis by flow cytometry: kappa/lamba, CD19, CD20, CD5, CD23, CD10

USEFUL UNDER CERTAIN CIRCUMSTANCES:
- IHC: LEF1 may help distinguish from variant CLL; SOX11 or IGHV sequencing may be useful for determination of indolent MCL; may also help in diagnosis of CCND1- MCL.
- Karyotype or FISH: t(11;14), t(14;18), CLL panel
- Cell surface marker analysis by flow cytometry: CD200

WORKUP

ESSENTIAL:
- Physical exam: Attention to node-bearing areas, including Waldeyer’s ring, and to size of liver and spleen
- Performance status
- B symptoms
- CBC, differential, platelets
- Comprehensive metabolic panel
- LDH
- Bone marrow biopsy ± aspirate
- C/A/P CT with contrast of diagnostic quality and/or whole-body PET/CT scan
- Hepatitis B testing\(^d\) if rituximab contemplated
- Echocardiogram or MUGA scan if anthracycline or anthracyclenedione-based regimen is indicated
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

USEFUL UNDER CERTAIN CIRCUMSTANCES:
- Endoscopy/colonoscopy\(^e\)
- Neck CT with contrast
- Uric acid
- Discussion of fertility issues and sperm banking
- Lumbar puncture (for blastic variant or CNS symptoms)
- Beta-2-microglobulin

\(^a\)Typical immunophenotype: CD5+, CD20+, CD43+, CD23-/-, cyclin D1+, CD10-/-.
\(^b\)See Use of Immunophenotyping/Genetic Testing in Differential Diagnosis of Mature B-Cell and NK/T-Cell Neoplasms (NHODG-A).
\(^c\)Ki-67 proliferation fraction of <30% in lymph nodes is associated with a more favorable prognosis. However, it is not used to guide treatment.

\(^d\)Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.

\(^e\)Essential for confirmation of stage I-II disease. See Discussion for details.
Mantle Cell Lymphoma

Induction Therapy

<table>
<thead>
<tr>
<th>Stage I, II (localized presentation, extremely rare)</th>
<th>See Suggested Regimens (MANT-A) ± RT<sup>g</sup> or RT<sup>g,h</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage II bulky, III, IV</td>
<td>See Induction Therapy (MANT-3)</td>
</tr>
</tbody>
</table>

Initial Response

- Complete responseⁱ

Follow-Up

- Clinical follow-up every 3–6 mo for 5 y and then yearly or as clinically indicated^j

Relapse

- Prior treatment with RT alone
- Prior treatment with chemotherapy ± RT

Second-Line Therapy

- Clinical trial^k or Second-line treatment
 - RT
 - See Suggested Regimens ([MANT-A](#))

Consider prophylaxis for tumor lysis syndrome ([NHODG-B](#))

See monoclonal antibody and viral reactivation ([NHODG-B](#))

ⁱEarly referral for high-dose therapy with stem cell rescue is advisable for planning purposes.

^gSee Principles of Radiation Therapy ([NHODG-D](#)).

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Early referral for high-dose therapy with stem cell rescue is advisable for planning purposes.
See Lugano Response Criteria for Non-Hodgkin's Lymphoma (NHODG-C).
Follow-up includes diagnostic tests and imaging using the same modalities performed during workup as clinically indicated.
Clinical trials of adjuvant therapy or for relapsed disease involving high-dose therapy with autologous stem cell rescue or allogeneic stem cell transplant, immunotherapy with nonmyeloablative stem cell rescue, or evaluation of treatment with new agents are appropriate.

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)
See monoclonal antibody and viral reactivation (NHODG-B)
Indolent

• Most common biomarker for indolent disease: (SOX11- [IGHV mutated])
• Typical clinical presentation: leukemic non-nodal CLL-like with splenomegaly, low tumor burden, Ki-67 proliferation fraction <10%

Symptomatic or other indication for treatment → Evaluate for clinical concern of transformation → Rebiopsy and evaluate for TP53/del(17p)

Positive

If treatment naive, treat as aggressive, see MANT-3

Negative

• Optimal treatment is unknown
 • Chemoimmunotherapy
 See MANT-A, Less aggressive or
 Induction therapy followed by HDT/ASCR may be appropriate (See MANT-A, Aggressive)

Asymptomatic, no other indication for treatment → Observation

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)

See monoclonal antibody and viral reactivation (NHODG-B)

1The description represents the most common indolent presentation; however, there are some patients with GI or blood/bone marrow involvement only, which may express SOX11 and have an indolent course.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SUGGESTED TREATMENT REGIMENS

(in alphabetical order)

Induction Therapy

Aggressive therapy
- CALGB regimen (Treatment 1, 2, 2.5: rituximab + methotrexate with augmented CHOP [cyclophosphamide, doxorubicin, vincristine, prednisone]; Treatment 3: etoposide, cytarabine, rituximab; Treatment 4: carmustine, etoposide, cyclophosphamide/autologous stem cell rescue; Treatment 5: rituximab maintenance) (Treatment 2.5 is given if the pre-Treatment 3 bone marrow biopsy contains >15% MCL.)
- HyperCVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with high-dose methotrexate and cytarabine) + rituximab
- NORDIC regimen (dose-intensified induction immunochemotherapy with rituximab + cyclophosphamide, vincristine, doxorubicin, prednisone [maxi-CHOP]) alternating with rituximab + high-dose cytarabine
- Alternating RCHOP/RDHAP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone)/(rituximab, dexamethasone, cisplatin, cytarabine)
- RDHAP (rituximab, dexamethasone, cisplatin, cytarabine)
- Sequential RCHOP/RICE (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone)/(rituximab, ifosfamide, carboplatin, etoposide)

Less aggressive therapy
- Bendamustine + rituximab
- VR-CAP (bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone)
- Cladribine + rituximab (category 2B)
- CHOP + rituximab
- Lenalidomide + rituximab
- Modified rituximab-HyperCVAD in patients older than 65 y

First-line Consolidation Candidate for HDT/ASCR
- High-dose therapy with autologous stem cell rescue± rituximab maintenance (category 1 for rituximab maintenance)

First-line Consolidation Not a Candidate for HDT/ASCR
- Rituximab maintenance (category 1 following RCHOP)

Second-line Therapy
- Bendamustine ± rituximab
- Bendamustine, bortezomib, and rituximab (category 2B)
- Bortezomib ± rituximab
- Cladribine + rituximab
- FC (fludarabine, cyclophosphamide) ± rituximab (category 3)
- Ibrutinib
- Ibrutinib, lenalidomide, rituximab (category 2B)
- Lenalidomide ± rituximab
- PCR (pentostatin, cyclophosphamide, rituximab) (category 3)
- PEPC (prednisone, etoposide, procarbazine, cyclophosphamide) ± rituximab (category 3)
- Venetoclax
- See Second-line Therapy for DLBCL (BCEL-C 2 of 4) without regard to transplantability

Second-line Consolidation
- Allogeneic stem cell transplant (nonmyeloablative or myeloablative)

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)
See monoclonal antibody and viral reactivation (NHODG-B)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

© National Comprehensive Cancer Network, Inc. 2017, All rights reserved.
Induction Therapy

Aggressive therapy

HyperCVAD (cyclophosphamide, vincristine, doxorubicin, dexamethasone alternating with methotrexate and cytarabine) + rituximab

Nordic trial regimen (Dose-intensified induction immunochemotherapy with rituximab + cyclophosphamide, vincristine, doxorubicin, prednisone [maxi-CHOP] alternating with rituximab + high-dose cytarabine)

CALGB regimen

RCHOP/RICE

RCHOP/RDHAP

RDHAP (rituximab, dexamethasone, cisplatin, cytarabine)
Mantle Cell Lymphoma

SUGGESTED TREATMENT REGIMENS

References

First-line Consolidation

High-dose therapy with autologous stem cell rescue

Rituximab maintenance

Second-line Therapy

Bendamustine

Bendamustine, bortezomib, and rituximab

Bortezomib

Venetoclax

DIAGNOSIS

ESSENTIAL:
- Hematopathology review of all slides with at least one paraffin block representative of the tumor. Rebiopsy if consult material is nondiagnostic.
- An FNA or core needle biopsy alone is not generally suitable for the initial diagnosis of lymphoma. In certain circumstances, when a lymph node is not easily accessible for excisional or incisional biopsy, a combination of core biopsy and FNA biopsies in conjunction with appropriate ancillary techniques for the differential diagnosis (immunohistochemistry, flow cytometry, PCR for IgH and TCR gene rearrangements, and FISH for major translocations) may be sufficient for diagnosis.
- Adequate immunophenotyping to establish diagnosis and GCB versus non-GCB origin.
 - IHC panel: CD20, CD3, CD5, CD10, CD45, BCL2, BCL6, Ki-67, IRF4/MUM1, MYC with or without
 - Cell surface marker analysis by flow cytometry: kappa/lambda, CD45, CD3, CD19, CD10, CD120

USEFUL UNDER CERTAIN CIRCUMSTANCES:
- Additional immunohistochemical studies to establish lymphoma subtype
 - IHC panel: Cyclin D1, kappa/lambda, CD30, CD138, Epstein-Barr virus in situ hybridization (EBER-ISH), ALK, HHV8, SOX11
 - Karyotype or FISH: MYC, BCL2, BCL6 rearrangements

SUBTYPES

- Subtypes included:
 - DLBCL, NOS
 - DLBCL coexistent with follicular lymphoma of any grade
 - DLBCL coexistent with gastric MALT lymphoma
 - DLBCL coexistent with nongastric MALT lymphoma
 - Follicular lymphoma grade 3
 - Intravascular large B-cell lymphoma
 - DLBCL associated with chronic inflammation
 - ALK-positive DLBCL
 - EBV-positive DLBCL of the elderly
 - T-cell-/histiocyte-rich large B-cell lymphoma

- Subtypes not included:
 - Primary cutaneous B-cell lymphomas (See NCCN Guidelines for Primary Cutaneous B-Cell Lymphomas)
 - Primary DLBCL of the CNS (See NCCN Guidelines for CNS)

SUBTYPES

- **Primary Mediastinal Large B-Cell Lymphoma (PMBL), see BCEL-B 1 of 4.**
- **Grey Zone Lymphoma, see BCEL-B 2 of 4.**
- **Double Hit Lymphomas, see BCEL-B 3 of 4.**
- **Primary Cutaneous B-cell Lymphomas, Leg type, see BCEL-B 4 of 4.**

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See **Workup (BCEL-2)**
NCCN Guidelines Version 2.2017
Diffuse Large B-Cell Lymphoma

WORKUP

ESSENTIAL:
• Physical exam: attention to node-bearing areas, including Waldeyer’s ring, and to size of liver and spleen
• Performance status
• B symptoms
• CBC, differential, platelets
• LDH
• Comprehensive metabolic panel
• Uric acid
• Whole-body PET/CT scan ± C/A/P CT with contrast of diagnostic quality
• Adequate bone marrow biopsy (>1.6 cm) ± aspirate; bone marrow may not be needed if PET/CT scan negative unless finding of another lymphoma subtype is important for treatment decision
• Calculation of International Prognostic Index (IPI) (See BCEL-A 1 of 2)
• Hepatitis B testing¹
• Echocardiogram or MUGA scan if anthracycline or anthracenedione-based regimen is indicated
• Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

USEFUL IN SELECTED CASES:
• Head CT/MRI with contrast or Neck CT/MRI with contrast
• Discussion of fertility issues and sperm banking
• HIV testing
• Lumbar puncture, consider if have 4–6 factors according to prognostic model (See BCEL-A 2 of 2), HIV lymphoma, testicular, double expressor lymphoma
• Beta-2-microglobulin

¹Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
In testicular lymphoma, after completion of chemotherapy, scrotal RT should be given (25–30 Gy).

In patients who are not candidates for chemotherapy, involved-site radiation therapy (ISRT) is recommended.

In selected cases (4–6 factors according to prognostic model, HIV lymphoma, testicular, double hit lymphoma), there may be an increased risk of CNS events. The optimal management of these events is uncertain, but CNS prophylaxis can be considered with 4–8 doses of intrathecal methotrexate and/or cytarabine, or systemic methotrexate (3–3.5 g/m²) during the course of treatment. Recent data regarding stage IE DLBCL of the breast have been suggested as a potential risk for CNS disease. See Prognostic Model to Assess the Risk of CNS Disease (BCEL-A 2 of 2).

For systemic disease with concurrent CNS disease, see BCEL-C.

Recommendations are for HIV-negative lymphoma only. For HIV-positive DLBCL, see AIDS-2.

See BCEL-C for regimens used in patients with poor left ventricular function and patients >80 years of age with comorbidities.

See Principles of Radiation Therapy (NHODG-D).

If RT is not used, interim staging after 3–4 cycles of RCHOP is appropriate to confirm response.

May include high-dose therapy.

Based on current clinical trials, RCHOP is preferable due to reduced toxicities, but other comparable anthracycline-based regimens are also acceptable (see BCEL-C).

In selected cases, RT to initially bulky sites of disease may be beneficial (category 2B).
NCCN Guidelines Version 2.2017

Diffuse Large B-Cell Lymphoma

PRE RT EVALUATION
(End of first-line chemoimmunotherapy)

- **Stage I, II:** Pre RT evaluation, repeat all positive studies
 - Complete response (PET negative)
 - Partial response (PET positive)
 - No response or progressive disease

FOLLOW-UP THERAPY

- Complete response (PET negative)
 - Complete planned course of treatment
- Partial response (PET positive)
 - Complete planned course of therapy with higher RT dose or
 - If PET+ after 6 cycles of RCHOP, high-dose therapy with autologous stem cell rescue ± RT pre- or post-transplant
 - Clinical trial (may include allogeneic stem cell transplant ± RT pre- or post-transplant)
- No response or progressive disease
 - See for Relapse or Refractory Disease (BCEL-6)
 - RT in select patients who are not candidates for chemotherapy

END-OF-TREATMENT RESTAGING

- Complete planned course of treatment
 - At completion of treatment, repeat all positive studies
- Partial response
 - Complete response
 - Partial response
 - No response or progressive disease

END-OF-TREATMENT RESPONSE

- Complete response
 - Complete planned course of treatment
- Partial response
 - Clinical trial (may include allogeneic stem cell transplant ± RT pre- or post-transplant)
- No response or progressive disease

FOLLOW-UP

- Clinical
 - H&P and labs, every 3–6 mo for 5 y and then yearly or as clinically indicated
 - Repeat C/A/P CT with contrast scan only as clinically indicated

Relapse, See Relapse or Refractory Disease (BCEL-6)

- Relapse
 - See Relapse or Refractory Disease (BCEL-6)
 - Palliative RT in select patients who are not chemotherapy candidates

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2017

Diffuse Large B-Cell Lymphoma

INTERIM RESTAGING

- **Responding disease**
 - Stage III, IV: After 2–4 cycles, restage to confirm response\(^z\)
 - Continue RCHOP\(^{aa}\) to a total of 6 cycles (category 1) or Clinical trial

- **No response or progressive disease\(^v\)**
 - **See Relapse or Refractory Disease (BCEL-6)**
 - RT in select patients who are not candidates for chemotherapy

FOLLOW-UP THERAPY

- **Responding disease**
 - Complete response\(^v\) (PET negative)\(^w\)
 - At completion of treatment, repeat all positive studies\(^u\)

- **Partial response\(^u,v\) (PET positive)\(^w\)**

END-OF-TREATMENT RESTAGING

- **Complete response\(^v\) (PET negative)\(^w\)**
 - Consider high-dose therapy with autologous stem cell rescue in high-risk patients (category 2B)

END-OF-TREATMENT RESPONSE

- **Partial response\(^u,v\) (PET positive)\(^w\)**
 - No response or progressive disease\(^v\)

FOLLOW-UP

- **Observation or Consider RT to initially bulky disease or isolated skeletal sites or**
 - **Relapse, See Relapsed or Refractory Disease (BCEL-6)**
 - **Palliative RT in select patients who are not candidates for chemotherapy**

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

\(^u\)Repeat biopsy should be strongly considered in PET-positive prior to additional therapy. If biopsy negative, follow PET-negative guideline.

\(^v\)PET/CT scan at interim restaging can lead to increased false positives and should be carefully considered in select cases. If PET/CT scan performed and positive, rebiopsy before changing course of treatment.

\(^w\)PET/CT scan should be interpreted via the PET Five Point Scale (See NHODG-C 3 of 3).

\(^z\)For other regimens, see BCEL-C.
NCCN Guidelines Version 2.2017
diffuse large B-cell lymphoma

Relapse/Refractory Disease

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)

See monoclonal antibody and viral reactivation (NHODG-B)

<table>
<thead>
<tr>
<th>RELAPSE/REFRACTORY DISEASE</th>
<th>ADDITIONAL THERAPY</th>
<th>RESPONSE #2</th>
<th>CONSOLIDATION/ADDITIONAL THERAPY</th>
<th>RELAPSE #2 OR GREATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>For patients with intention to proceed to high-dose therapy</td>
<td>Second-line therapy See Suggested Regimens (BCEL-C)</td>
<td>Complete response^v or Partial response^v</td>
<td>High-dose therapy with autologous stem cell rescue (category 1 for CR, category 2A for all others) ± ISRTbb or Clinical trial or Allogeneic stem cell transplant in selected casescc</td>
<td>Clinical trialdd or Alternative second-line therapy (See BCEL-C) or Palliative RT or Best supportive care</td>
</tr>
<tr>
<td>Non-candidates for high-dose therapy</td>
<td>Clinical trial or Second-line therapy See Suggested Regimens (BCEL-C) or Palliative RT or Best supportive care</td>
<td>No response</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^m For systemic disease with concurrent CNS disease, see BCEL-C.
^v See Lugano Response Criteria for Non-Hodgkin’s Lymphoma (NHODG-C).
bb Additional RT can be given before or after high-dose therapy with stem cell rescue to sites of previous positive disease.
cc Selected cases include mobilization failures and persistent bone marrow involvement.
dd Clinical trials or individual regimens: Patients who progress after three successive regimens are unlikely to derive additional benefit from currently utilized combination chemotherapy regimens, except for patients with a long disease-free interval.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2017
Diffuse Large B-Cell Lymphoma

INTERNATIONAL PROGNOSTIC INDEXa

ALL PATIENTS:
- Age >60 years
- Serum LDH > normal
- Performance status 2–4
- Stage III or IV
- Extranodal involvement >1 site

INTERNATIONAL INDEX, ALL PATIENTS:
- Low 0 or 1
- Low-intermediate 2
- High-intermediate 3
- High 4 or 5

AGE-ADJUSTED INTERNATIONAL PROGNOSTIC INDEXa

PATIENTS ≤60 YEARS:
- Stage III or IV
- Serum LDH > normal
- Performance status 2–4

INTERNATIONAL INDEX, PATIENTS ≤60 YEARS:
- Low 0
- Low-intermediate 1
- High-intermediate 2
- High 3

STAGE-ADJUSTED INTERNATIONAL PROGNOSTIC INDEXb

STAGE I or II PATIENTS:
- Age >60 years
- Serum LDH > normal
- Performance status 2–4

INTERNATIONAL INDEX, STAGE I or II PATIENTS:
- Low 0 or 1
- High 2–4

NCCN-IPIc

<table>
<thead>
<tr>
<th>Age, years</th>
<th>Risk group</th>
</tr>
</thead>
<tbody>
<tr>
<td>>40 to ≤60</td>
<td>0–1</td>
</tr>
<tr>
<td>>60 to <75</td>
<td>2–3</td>
</tr>
<tr>
<td>≥75</td>
<td>4–5</td>
</tr>
</tbody>
</table>

LDH, normalized
| >1 to ≤3 | 1 |
| >3 | 2 |

Ann Arbor stage III-IV
- 1

Extranodal disease* 1

Performance status ≥2 1

cThis research was originally published in Blood. Zhou Z, Sehn LH, Rademaker AW, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood 2014;123:837-842. © the American Society of Hematology

*Disease in bone marrow, CNS, liver/GI tract, or lung.
Prognostic Model to Assess the Risk of CNS Diseasea,b

- Age $>$ 60 years
 Low risk
 0–1
- Serum LDH $>$ normal
 Intermediate-risk
 2–3
- Performance status $>$ 1
 High-risk
 4–6
- Stage III or IV
- Extranodal involvement $>$ 1 site
- Kidney or adrenal gland involvement

Primary Mediastinal Large B-Cell Lymphoma

• Primary mediastinal large B-cell lymphoma (PMBL) can be defined as a clinical entity presenting with primary site of disease in mediastinum with or without other sites and has histology of DLBCL. PBML overlaps with grey zone lymphomas that have intermediate features between Hodgkin lymphoma and PMBL and have unique diagnostic characteristics. See Grey Zone Lymphoma (BCEL-B 2 of 4).

• Clinical pathologic correlation is required to establish diagnosis.

• Optimal first-line therapy is more controversial than other subtypes of NHL; however, treatment regimens include (in order of preference):
 - Dose-adjusted EPOCH-R ([etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin] + rituximab)\(^a\) x 6 cycles
 - For persistent focal disease, RT can be added.
 - RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) x 6 cycles + RT
 - RCHOP x 4 cycles followed by ICE (ifosfamide, carboplatin, etoposide)\(^b\) x 3 cycles ± RT (category 2B)

• Role of RT is controversial. If PET/CT scan was negative at the end of treatment and initial disease was non-bulky, observation may be considered.

• Residual mediastinal masses are common. PET/CT scan is essential post-treatment. Biopsy of PET/CT scan positive mass is recommended if additional systemic treatment is contemplated.

Grey Zone Lymphomaa,b,c
(intermediate between DLBCL and classical HL)

Synonyms
- B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma (CHL)
- Large B-cell lymphoma with Hodgkin features
- Hodgkin-like anaplastic large cell lymphoma

Clinical Presentation
- Present with large anterior mediastinal mass with or without supraclavicular lymph nodes
 - More common in males, presenting between 20–40 y
- Non-mediastinal grey zone lymphoma is more likely compared to mediastinal cases to occur in older individuals and typically have higher risk features, more advanced-stage disease, and higher IPI.d

Morphology
- Pleomorphic cells in a diffusely fibrous stroma
- Typically larger and more pleomorphic than in PMBL, sometimes resembling lacunar or Hodgkin-like cells
- Necrosis without neutrophilic infiltrate is frequent

Immunophenotype
- Often transitional features between CHL and PMBL
- CD45 often positive; CD30, CD15, CD20, CD79a frequently positive
- EBV -
- PAX5, BOB.1, OCT-2 are often positive, BCL6 variable
- CD10, ALK are negative
- If morphology closer to PMBL, or absence of CD20, CD15+ would suggest the diagnosis of grey zone lymphoma
- If morphology closer to CHL, CD20 strong positivity and other B-cell markers and absence of CD15 would suggest grey zone lymphoma.

Prognosis and Treatment
- A worse prognosis than either CHL or PMBL has been suggested.
- While there is no consensus on the treatment, aggressive large B-cell lymphoma regimens are preferred.
- If the tumor cells are CD20+, the addition of rituximab to the chemotherapy treatment should be considered.
- Data suggest that the use of rituximab-anthracycline-based chemotherapy as in other B-cell lymphomas (\textbf{See BCEL-C}) is helpful. If localized disease, then RT is preferred.
- There is no ostensible difference in outcome between mediastinal and non-mediastinal grey zone lymphoma.

Double Hit Lymphomas

Definition
• Double Hit (Double Rearrangements):
 ▶ DLBCL or HGB-NOS (intermediate between DLBCL and BL) with MYC rearrangement plus BCL2 and/or BCL6 rearrangements (as detected by FISH or standard cytogenetics) are known as “double-hit” lymphomas (if all three are rearranged, they are referred to as “triple-hit” lymphomas).
 ▶ Vast majority are germinal center B-cell–like lymphomas

Clinical Presentation
• Often present with poor prognostic parameters, such as elevated LDH, bone marrow and CNS involvement, and a high IPI score.

Treatment
• Clinical trial is recommended.
• While the standard of care is not established, the following regimens have been used at NCCN Member Institutions:
 ▶ DA-EPOCH-R
 ▶ RHyper-CVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with high-dose methotrexate and cytarabine) + rituximab
 ▶ R-CODOX-M/R-IVAC (rituximab-cyclophosphamide, vincristine, doxorubicin with methotrexate/ifosfamide, etoposide, and cytarabine)
 ▶ RCHOP has been associated with inferior outcomes.
• Consider consolidation with high-dose therapy with autologous stem cell rescue. While its role is not established, this is done at some NCCN Member Institutions.
• These patients are at higher risk for CNS involvement (See BCEL-A 2 of 2); consider CNS prophylaxis according to institutional standards.

References:
Diffuse Large B-Cell Lymphoma

PRIMARY CUTANEOUS DIFFUSE LARGE B-CELL LYMPHOMA, LEG TYPE

<table>
<thead>
<tr>
<th>STAGE</th>
<th>INITIAL THERAPY</th>
<th>SECONDARY THERAPY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solitary regional, T1-2 (Ann Arbor Stage IE)</td>
<td>RCHOP(^b) + local RT or Local RT(^c) or Clinical trial</td>
<td>CR(^d) → Observe → Relapse(^d) → RCHOP (if not previously received) or Manage as per BCEL-6 or Local RT to previously unirradiated tumor</td>
</tr>
<tr>
<td>Generalized disease (skin only), T3</td>
<td>RCHOP(^b) ± local RT or Local RT or Clinical trial</td>
<td>CR → Observe → Relapse(^d) → Manage as per BCEL-6 or Local RT for palliation or Radioimmunotherapy</td>
</tr>
<tr>
<td>Extracutaneous disease</td>
<td>Manage as per BCEL-3</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)For TNM Classification of Cutaneous Lymphoma other than MF/SS (See NCCN Guidelines for T-Cell Lymphomas and Cutaneous B-Cell Lymphoma).

\(^b\)For patients who cannot tolerate anthracyclines, see BCEL-C for regimens for patients with poor left ventricular function.

\(^c\)For patients not able to tolerate chemotherapy.

\(^d\) PET/CT (strongly preferred) or C/A/P CT with contrast at the end of treatment to assess response. It can be repeated if there is clinical suspicion of progressive disease.

Note: All recommendations are category 2A unless otherwise indicated.
NCCN Guidelines Version 2.2017
Diffuse Large B-Cell Lymphoma

SUGGESTED TREATMENT REGIMENS
(in alphabetical order)

First-line Therapy

• RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) (category 1)
• Dose-adjusted RCHOP 14 (category 3)
• Dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin) + rituximab (category 2B)

First-line Therapy for Patients with Poor Left Ventricular Function or Very Frail

• RCEPP (rituximab, cyclophosphamide, etoposide, prednisone, procarbazine)
• RCDOP (rituximab, cyclophosphamide, liposomal doxorubicin, vincristine, prednisone)
• DA-EPOCHf (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin) + rituximab
• RCEOP (rituximab, cyclophosphamide, etoposide, vincristine, prednisone)
• RGCVP (rituximab, gemcitabine, cyclophosphamide, vincristine, prednisolone)

Patients >80 Years of Age with Comorbidities

• R-mini-CHOP
• RGCVP (rituximab, gemcitabine, cyclophosphamide, vincristine, prednisolone)

First-line Consolidation (optional)

• Lenalidomide maintenance (category 2B) for patients 60–80 y of age
• Age-adjusted IPI high-risk disease: High-dose therapy with autologous stem cell rescue (category 2B)

Concurrent Presentation with CNS Disease

• Parenchymal: 3 g/m² or more of systemic methotrexate given on Day 15 of a 21-day RCHOP cycle that has been supported by growth factors.
• Leptomeningeal: IT methotrexate/cytarabine, consider Ommaya reservoir placement and/or systemic methotrexate (3–3.5 g/m²)

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)

See monoclonal antibody and viral reactivation (NHODG-B)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SUGGESTED TREATMENT REGIMENSa
(in alphabetical order)

Second-line and Subsequent Therapyc,g,h (intention to proceed to high-dose therapy)
- DHAP (dexamethasone, cisplatin, cytarabine) ± rituximab
- ESHAP (etoposide, methylprednisolone, cytarabine, cisplatin) ± rituximab
- GDP (gemcitabine, dexamethasone, cisplatin) ± rituximab or (gemcitabine, dexamethasone, carboplatin) ± rituximab
- Gemcitabine, oxaliplatin ± rituximab
- ICE (ifosfamide, carboplatin, etoposide) ± rituximab
- MINE (mesna, ifosfamide, mitoxantrone, etoposide) ± rituximab

Second-line and Subsequent Therapyc,g,h (non-candidates for high-dose therapy)
- Bendamustine ± rituximab
- Brentuximab vedotin for CD30+ disease (category 2B)
- CEPP (cyclophosphamide, etoposide, prednisone, procarbazine) ± rituximab - PO and IV
- CEOP (cyclophosphamide, etoposide, vincristine, prednisone) ± rituximab
- DA-EPOCH ± rituximab
- GDP ± rituximab or (gemcitabine, dexamethasone, carboplatin) ± rituximab
- Gemcitabine, vinorelbine ± rituximab (category 3)
- Lenalidomide ± rituximab (non-GCB DLBCL)
- Rituximab

See First-line Therapy on BCEL-C 1 of 4.

aSee references for regimens BCEL-C 3 of 4 and BCEL-C 4 of 4.
cInclusion of any anthracycline or anthracenedione in patients with impaired cardiac functioning should have more frequent cardiac monitoring.
gIf additional anthracycline is administered after a full course of therapy, careful cardiac monitoring is essential. Dexrazoxane may be added as a cardioprotectant.
hRituximab should be included in second-line therapy if there is relapse after a reasonable remission (>6 mo); however, rituximab should often be omitted in patients with primary refractory disease.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SUGGESTED TREATMENT REGIMENS

References

First-line Therapy for Patients with Poor Left Ventricular Function

CDOP (cyclophosphamide, liposomal doxorubicin, vincristine, and prednisone) + rituximab

RCEOP (rituximab, cyclophosphamide, etoposide, vincristine, prednisolone)

First-line Therapy for Elderly Patients (age >80 years)

R-mini-CHOP

First-line Consolidation

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SUGGESTED TREATMENT REGIMENS

References

GemOX (gemcitabine, oxaliplatin) ± rituximab
Gemcitabine, vinorelbine, rituximab

BENDAMUSTINE ± RITUXIMAB

GDP (gemcitabine, dexamethasone, cisplatin) ± rituximab

Burkitt Lymphoma

Diagnosis

Essential:
- Hematopathology review of all slides with at least one paraffin block representative of the tumor. Rebiopsy if consult material is nondiagnostic.
- An FNA or core needle biopsy alone is not generally suitable for the initial diagnosis of lymphoma. In certain circumstances, when a lymph node is not easily accessible for excisional or incisional biopsy, a combination of core biopsy and FNA biopsies in conjunction with appropriate ancillary techniques for the differential diagnosis (immunohistochemistry, flow cytometry, PCR for IgH and TCR gene rearrangements, and FISH for major translocations) may be sufficient for diagnosis.
- Adequate immunophenotyping to establish diagnosis:
 - IHC panel: CD45, CD20, CD3, CD10, Ki-67, BLC2, BCL6, TdT with or without
 - Cell surface marker analysis by flow cytometry: kappa/lambda, CD45, CD20, CD3, CD5, CD19, CD10, TdT
 - Cytogenetics ± FISH: t(8;14) or variants; MYC rearrangement

Useful under certain circumstances:
- FISH: BCL2; BCL6 rearrangements
- EBER-ISH

Workup

Essential:
- Physical exam: attention to node-bearing areas, including Waldeyer's ring, and to size of liver and spleen
- Performance status
- B symptoms
- CBC, differential, platelets
- LDH
- Comprehensive metabolic panel
- Uric acid
- C/A/P CT with contrast of diagnostic quality
- Lumbar puncture
- Flow cytometry of cerebrospinal fluid
- Unilateral or bilateral bone marrow biopsy ± aspirate
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

Useful in selected cases:
- Neck CT with contrast
- Brain MRI with and without contrast
- Whole-body PET/CT scan

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
RISK ASSESSMENT

Low risk
- Normal LDH
- Completely resected abdominal lesion or single extra-abdominal mass <10 cm

High risk

INDUCTION THERAPY

- Low risk
 - Clinical trial or See Suggested Regimens (BURK-A)
 - Prophylaxis for tumor lysis syndrome is mandatory (See NHODG-B)
 - See monoclonal antibody and viral reactivation (NHODG-B)

- High risk
 - Clinical trial or See Suggested Regimens (BURK-A)

INITIAL RESPONSE

- Complete response
 - Follow-up after complete response:
 - every 2–3 mo for 1 y, then every 3 mo for 1 y, then every 6 mo

- < Complete response
 - Follow-up after complete response:
 - every 2–3 mo for 1 y, then every 3 mo for 1 y, then every 6 mo

RELAPSE

- clinical trial
- Second-line chemotherapy (BURK-A) followed by HDT/ASCR or autologous stem cell transplant in selected patients or
- Best supportive care
- Clinical trial or Individual approach or Palliative RT

1Clinical trials may include high-dose therapy with autologous stem cell rescue.
2All regimens for Burkitt lymphoma include CNS prophylaxis/therapy.
3See Lugano Response Criteria for Non-Hodgkin's Lymphoma (NHODG-C).
4Repeat C/A/P CT scan with contrast only as clinically indicated.
5Relapse after 2 y is rare; therefore, follow-up should be individualized according to patient characteristics.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
BURKITT Lymphoma

SUGGESTED TREATMENT REGIMENSa,b
(in alphabetical order)

Prophylaxis for tumor lysis syndrome is mandatory (See NHODG-B)
See monoclonal antibody and viral reactivation (NHODG-B)

CHOP is not adequate therapy.

Induction Therapy

Low Risk - Combination Regimens

- CALGB 10002 regimen (cyclophosphamide and prednisone followed by cycles containing either ifosfamide or cyclophosphamide; high-dose methotrexate, leucovorin, vincristine, dexamethasone, and either doxorubicin or etoposide or cytarabine; or intrathecal triple therapy [methotrexate, cytarabine, and hydrocortisone]) + rituximab.
- CODOX-M (original or modified) (cyclophosphamide, doxorubicin, vincristine with intrathecal methotrexate and cytarabine followed by high-dose systemic methotrexate) ± rituximab (3 cycles)
- Dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin) + rituximab (minimum 3 cycles with one additional cycle beyond CR) (regimen includes intrathecal methotrexate) (Data are for patients without CNS disease.)
- HyperCVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone) alternating with high-dose methotrexate and cytarabine + rituximab (regimen includes intrathecal therapy)

High Risk - Combination Regimens

- CALGB 10002 regimen (cyclophosphamide and prednisone followed by cycles containing either ifosfamide or cyclophosphamide; high-dose methotrexate, leucovorin, vincristine, dexamethasone, and either doxorubicin or etoposide or cytarabine; or intrathecal triple therapy [methotrexate, cytarabine, and hydrocortisone] with prophylactic CNS irradiation in select patients) + rituximab
- CODOX-M (original or modified) (cyclophosphamide, doxorubicin, vincristine with intrathecal methotrexate and cytarabine followed by high-dose systemic methotrexate) alternating with IVAC (ifosfamide, cytarabine, etoposide, and intrathecal methotrexate) ± rituximab
- Dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin) + rituximab (for high-risk patients not able to tolerate aggressive treatments) (regimen includes intrathecal methotrexate) (Data are for patients without CNS disease.)
- HyperCVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone) alternating with high-dose methotrexate and cytarabine + rituximab (regimen includes intrathecal therapy)

Second-line Therapy (select patients with reasonable remission)

While no definitive second-line therapies exist, there are limited data for the following regimens:

- Dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin) + rituximab (minimum 3 cycles with one additional cycle beyond CR) (regimen includes intrathecal methotrexate) (Data are for patients without CNS disease.)
- RICE (rituximab, ifosfamide, carboplatin, etoposide); intrathecal methotrexate if have not received previously
- RIVAC (rituximab, ifosfamide, cytarabine, etoposide); intrathecal methotrexate if have not received previously
- RGDP (rituximab, gemcitabine, dexamethasone, cisplatin)
- High-dose cytarabine + rituximab

aSee references for regimens BURK-A 2 of 2.
bAll regimens for Burkitt lymphoma include CNS prophylaxis/therapy.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 2.2017, 02/21/17 © National Comprehensive Cancer Network, Inc. 2017, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
SUGGESTED TREATMENT REGIMENS

Low- and High-Risk Combination Regimens

CALGB 10002

CODOX-M (original or modified) (cyclophosphamide, doxorubicin, vincristine with intrathecal methotrexate and cytarabine followed by high-dose systemic methotrexate) with (for high-risk) or without (for low-risk) alternating IVAC (ifosfamide, cytarabine, etoposide, and intrathecal methotrexate ± rituximab)

Dose-adjusted EPOCH plus rituximab (regimen includes IT methotrexate)

HyperCVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone) alternating with high-dose methotrexate and cytarabine + rituximab

Second-line Therapy

RICE (rituximab, ifosfamide, carboplatin, etoposide)

References

Low- and High-Risk Combination Regimens

CALGB 10002

CODOX-M (original or modified) (cyclophosphamide, doxorubicin, vincristine with intrathecal methotrexate and cytarabine followed by high-dose systemic methotrexate) with (for high-risk) or without (for low-risk) alternating IVAC (ifosfamide, cytarabine, etoposide, and intrathecal methotrexate ± rituximab)

Dose-adjusted EPOCH plus rituximab (regimen includes IT methotrexate)

HyperCVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone) alternating with high-dose methotrexate and cytarabine + rituximab

Second-line Therapy

RICE (rituximab, ifosfamide, carboplatin, etoposide)
NCCN Guidelines Version 2.2017
AIDS-Related B-Cell Lymphomas

DIAGNOSIS

ESSENTIAL:
• Hematopathology review of all slides with at least one paraffin block representative of the tumor. Rebiopsy if consult material is nondiagnostic.
• An FNA or core needle biopsy alone is not generally suitable for the initial diagnosis of lymphoma. In certain circumstances, when a lymph node is not easily accessible for excisional or incisional biopsy, a combination of core biopsy and FNA biopsies in conjunction with appropriate ancillary techniques for the differential diagnosis (immunohistochemistry, flow cytometry, PCR for IgH and TCR gene rearrangements, and FISH for major translocations) may be sufficient for diagnosis.
• Adequate immunophenotyping to establish diagnosis and subclassification (DLBCL, Burkitt, Plasmablastic, Primary effusion lymphoma [PEL])
 ‣ IHC panel: CD45, CD20, CD3, CD10, BCL2, BCL6, Ki-67, CD138, kappa/lambda, HHV8, CD30 for PEL, with or without
 ‣ Cell surface marker analysis by flow cytometry: kappa/lambda, CD45, CD3, CD5, CD19, CD10, CD20
• EBER-ISH

USEFUL UNDER CERTAIN CIRCUMSTANCES:
• Molecular analysis to detect: antigen receptor gene rearrangements; BCL2; BCL6; MYC rearrangements
• Cytogenetics or FISH: BCL2; BCL6; MYC

See Workup (AIDS-2)

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See Use of Immunophenotyping/Genetic Testing in Differential Diagnosis of Mature B-Cell and NK/T-Cell Neoplasms (NHODG-A).
WORKUP

ESSENTIAL
- Physical exam: attention to node-bearing areas, including Waldeyer's ring, and to size of liver and spleen
- Performance status
- B symptoms
- CBC, differential, platelets
- LDH
- Comprehensive metabolic panel
- Uric acid, phosphate
- C/A/P CT with contrast of diagnostic quality and/or whole-body PET/CT scan
- Bone marrow biopsy ± aspirate
- CD4 count
- Lumbar puncture, except for PEL and early-stage DLBCL
- HIV viral load
- Hepatitis B testing\(^b\)
- Hepatitis C testing\(^c\)
- Echocardiogram or MUGA scan if anthracycline or anthracenedione-based regimen is indicated
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

USEFUL IN SELECTED CASES:
- UGI/barium enema/endoscopy
- Neck CT with contrast
- Plain bone radiographs and bone scan
- Discussion of fertility issues and sperm banking
- Beta-2-microglobulin
- Brain MRI with contrast, or head CT with contrast
- EBV viral load
- Quantitative immunoglobulins

\(^b\)Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.

\(^c\)Hepatitis C antibody and if positive, viral load and consult with hepatologist.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
TREATMENTd

Antiretrovirals (ARVs) can be administered safely with chemotherapy but consultation with an HIV specialist or pharmacist is important to optimize compatibility. With continued development of new ARVs, effective alternatives are often available to patients when the existing ARVs are expected to affect metabolism of or share toxicities with chemotherapy. In general, avoidance of zidovudine, cobicistat, and ritonavir is strongly recommended. Concurrent HAART is associated with higher CR rates (Barta et al. Blood 2013,122:3251-3262).

Burkitt lymphoma

- Suggested regimens:g (alphabetical order)
 - CDE (cyclophosphamide, doxorubicin, etoposide) + rituximab
 - CODOX-M/IVAC (modified): cyclophosphamide, vincristine, doxorubicin, high-dose methotrexate alternating with ifosfamide, etoposide, high-dose cytarabine ± rituximab
 - Dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin) + rituximabf
 - HyperCVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with high-dose methotrexate and cytarabine) + rituximab
- If CD4 <50, maximize supportive care
- GCSF for all patients

dSee Supportive Care (AIDS-A).
eSee references for regimens (AIDS-B).

fFor dose-adjusted EPOCH + rituximab dosing, see Sparano J, et al. Blood 2010;115:3008-3016.

gProphylactic IT methotrexate is used at some NCCN Member Institutions for all patients with HIV-associated DLBCL. At other NCCN Member Institutions, patients receive IT methotrexate in selective settings (4–6 factors according to prognostic model, HIV lymphoma, testicular, double hit lymphoma). See Prognostic Model to Assess the Risk of CNS Disease (BCEL-A 2 of 2).

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)

See monoclonal antibody and viral reactivation (NHODG-B)

dSee Supportive Care (AIDS-A).
eSee references for regimens (AIDS-B).

fFor dose-adjusted EPOCH + rituximab dosing, see Sparano J, et al. Blood 2010;115:3008-3016.

gProphylactic IT methotrexate is used at some NCCN Member Institutions for all patients with HIV-associated DLBCL. At other NCCN Member Institutions, patients receive IT methotrexate in selective settings (4–6 factors according to prognostic model, HIV lymphoma, testicular, double hit lymphoma). See Prognostic Model to Assess the Risk of CNS Disease (BCEL-A 2 of 2).

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
AIDS-Related B-Cell Lymphomas

TREATMENT

Antiretrovirals (ARVs) can be administered safely with chemotherapy but consultation with an HIV specialist or pharmacist is important to optimize compatibility. With continued development of new ARVs, effective alternatives are often available to patients when the existing ARVs are expected to affect metabolism or share toxicities with chemotherapy. In general, avoidance of zidovudine, cobicistat, and ritonavir is strongly recommended. Concurrent HAART is associated with higher CR rates (Barta et al. Blood 2013,122:3251-3262).

Plasmablastic Lymphoma

- Suggested regimens:
 - CODOX-M/IVAC (modified)
 - Dose-adjusted EPOCH
 - HyperCVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with high-dose methotrexate and cytarabine)
 - Standard CHOP is not adequate therapy

Primary CNS Lymphoma

- Initiate HAART, if not already receiving
- Even with poorly controlled HIV and/or marginal performance status, consider high-dose methotrexate
- For select patients with good performance status on HAART, see NCCN Guidelines for CNS-Primary CNS Lymphoma
- Consider RT alone for palliation of patients who are not candidates for systemic therapy
- Best supportive care (See NCCN Guidelines for Palliative Care)

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

dSee Supportive Care (AIDS-A).
eSee references for regimens (AIDS-B).
hManagement can also apply to HIV-negative plasmablastic lymphoma.
NCCN Guidelines Version 2.2017
AIDS-Related B-Cell Lymphomas

SUPPORTIVE CARE

• Increased risk of infectious complications mitigated with improved HIV control and aggressive infection prophylaxis:
 ‣ Patients not on HAART at diagnosis may initiate HAART during staging period, or alternately initiate after first cycle of chemotherapy. All HAART initiation or changes should be done in consultation with an HIV specialist.
 ‣ Antiretrovirals (ARVs) can be administered safely with chemotherapy but consultation with an HIV specialist or pharmacist is important to optimize compatibility. With continued development of new ARVs, effective alternatives are often available to patients when the existing ARVs are expected to affect metabolism of or share toxicities with chemotherapy. In general, avoidance of zidovudine, cobicistat, and ritonavir is strongly recommended.
• Required for all:
 ‣ Growth factor support: begin 24–48 hours after chemotherapy and continue past nadir recovery of blood counts of each cycle
 ‣ PJP prophylaxis: Continue until CD4 recovered to >200 post completion of chemotherapy
 ‣ Gram-negative rods: Quinolone prophylaxis or equivalent during period of neutropenia
 ‣ Fungal: Azole antifungals should be held 24 hours prior to through 24 hours post chemotherapy with CYP3A4 metabolism
 ‣ MAC prophylaxis for CD4 <100
• Strongly consider VZV/HSV prophylaxis
• Strongly encourage consultation with infectious disease specialist for febrile neutropenia in context of extensive prophylaxis as well as for refractory diarrhea.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
CODOX-M/IVAC (cyclophosphamide, vincristine, doxorubicin, high-dose methotrexate alternating with ifosfamide, etoposide, high-dose cytarabine) ± rituximab

Dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin)

Dose-adjusted EPOCH + rituximab

CDE + rituximab

HyperCVAD (cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with high-dose methotrexate and cytarabine) ± rituximab

CHOP + rituximab

Rituximab and CD4 counts

Lymphoblastic Lymphoma

The lymphoblastic lymphoma (LL) category comprises two diseases, T-cell LL (LL-T; 90%) and B-cell LL (LL-B; 10%), which corresponds to T-ALL and B-ALL, respectively, with presentations in extramedullary sites.

Typical immunophenotype:
- **LL-B**: sIg-, CD10+/-, CD19+, CD20-/+, TdT+, CD2+, CD7+ cytoplasmic CD3+, sCD3-/+.
- **LL-T**: sIg-, CD10-, CD19/20-, CD3-/+, CD4/8+/+, CD1a+/-, TdT+, CD2+, CD7+ cytoplasmic CD3+.

Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.

Initiation of therapy should not be delayed in order to obtain a PET/CT scan.

ESSENTIAL:
- Physical exam: attention to node-bearing areas, including Waldeyer’s ring, and to size of liver and spleen
- Performance status
- B symptoms
- CBC, differential, platelets
- LDH
- Comprehensive metabolic panel
- Hepatitis B testing
- Echocardiogram or MUGA scan if anthracycline or anthracenedione-based regimen is indicated
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

USEFUL UNDER CERTAIN CIRCUMSTANCES:
- Additional immunohistochemical studies to establish lymphoma subtype
 - Paraffin panel: CD22, CD4, CD8, cyclin D1
 - Molecular analysis to detect: antigen receptor gene rearrangements

USEFUL IN SELECTED CASES:
- Brain MRI with contrast
- Discussion of fertility issues and sperm banking
- Beta-2-microglobulin
- Whole-body PET/CT scan

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Post-Transplant Lymphoproliferative Disorders

Diagnosis

Essential:
- Histopathology and adequate immunophenotype to establish diagnosis. Rebiopsy if consult material is nondiagnostic.
 - IHC panel: CD3, CD5, CD10, BCL6, BCL2, IRF4/MUM1, CD20, CD79a, PAX5, Ki-67, kappa, lambda with or without
 - Cell surface marker analysis by flow cytometry: CD3, CD5, CD7, CD4, CD8, CD19, CD20, CD10, kappa, lambda
 - Epstein-Barr virus evaluation by EBV-LMP1 or EBER-ISH (if EBV-LMP1 negative, EBER-ISH is recommended)

Useful Under Certain Circumstances:
- Additional immunophenotyping
 - IHC panel: CD15, CD30, CD45, CD7, CD4, CD8, ALK, TIA-1, Granzyme B, CD57, CD56, CD138
 - Cell surface marker analysis by flow cytometry: CD138, cytoplasmic kappa and lambda, CD30, CD57, CD56, CD16, CD25, CD52.
- Molecular analysis to detect: IGH gene rearrangements
- BCL6 gene mutation analysis
- EBV by southern blot

Workup

Essential:
- Performance status
- Albumin
- Immunosuppressive regimen
- LDH, electrolytes, BUN, creatinine
- CBC, differential
- Hepatitis B testing
 - Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.
- Epstein-Barr virus evaluation by EBV-LMP1 or EBER-ISH: Other than reduction of immunosuppression (RI), there are no established treatments.
 - Treatment with multiagent T-cell regimens may be considered; however, autotransplant may not be appropriate.

Useful in Selected Cases:
- Echocardiogram or MUGA scan if treatment includes regimens containing anthracyclines or anthracyclenes
- Bone marrow evaluation
- Brain MRI with and without contrast
- EBV PCR
- CMV PCR
- EBV serology for primary versus reactivation
- Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)

PTLD Subtype

- **Early lesions**: See First-line Therapy (PTLD-2)
- **Polymorphic**: See NCCN Guidelines for Hodgkin Lymphoma
- **Classical Hodgkin lymphoma**: Other than reduction of immunosuppression (RI), there are no established treatments.
- **T-cell PTLD**: Treatment with multiagent T-cell regimens may be considered; however, autotransplant may not be appropriate.

\[a\] BCL6 positivity has been associated with a poor response to reduction in immunosuppressive therapy.

\[b\] Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.

\[c\] Refers to B-cell post-transplant lymphomas.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PTLD SUBTYPE

Early lesions
- **FIRST-LINE THERAPY**
 - RI
d
- **INITIAL RESPONSE**
 - Complete response
- **SECOND-LINE THERAPY**
 - Manage immunosuppression and monitor EBV PCR

Polymorphic
- **Systemic**
 - **FIRST-LINE THERAPY**
 - RI, if possible and:
 - Rituximab alone
 - Chemoimmunotherapy
 - Complete response
 - **SECOND-LINE THERAPY**
 - Monitor EBV PCR and:
 - Observation
 - Continue RI, if possible ± maintenance rituximab

Localized
- **FIRST-LINE THERAPY**
 - RI, if possible and:
 - RT ± rituximab
 - Surgery ± rituximab
 - Rituximab alone
 - Complete response
- **SECOND-LINE THERAPY**
 - Monitor EBV PCR and:
 - Observation
 - Continue RI, if possible ± maintenance rituximab

Monomorphic
- **FIRST-LINE THERAPY**
 - RI, if possible and/or:
 - Rituximab alone
 - Chemoimmunotherapy
 - Complete response
- **SECOND-LINE THERAPY**
 - See appropriate histology guidelines for follow-up

Consider prophylaxis for tumor lysis syndrome *(See NHODG-B)*

See monoclonal antibody and viral reactivation *(NHODG-B)*

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

\(d\) Treatment is based on the unique histology.

\(e\) Response to RI is variable and patients need to be closely monitored; RI should be coordinated with the transplant team.

\(f\) Concurrent or sequential chemoimmunotherapy, *(See Suggested Treatment Regimens (PTLD-A)).*

\(g\) As part of a step-wise approach in patients who are not highly symptomatic or cannot tolerate chemotherapy secondary to comorbidity.

\(h\) Re-escalation of immunosuppressive therapy should be individualized, taking into account the extent of initial RI and the nature of the organ allograft. These decisions should be made in conjunction with the transplant team.
SUGGESTED TREATMENT REGIMENS
(in alphabetical order)

Concurrent chemoimmunotherapy
- RCHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone)
- For frail patients who cannot tolerate anthracycline, no specific regimen has been identified but options may include:a
 ‣ RCVP (rituximab, cyclophosphamide, vincristine, prednisone)
 ‣ RCEPP (rituximab, cyclophosphamide, etoposide, prednisone, procarbazine)
 ‣ RCEOP (rituximab, cyclophosphamide, etoposide, vincristine, prednisone)

Sequential chemoimmunotherapy
- Rituximab 375 mg/m² weekly x 4 weeksb
 ‣ Restage with PET/CT scan
 ◊ If PET/CT scan negative, rituximab 375 mg/m² every 3 weeks x 4 cycles
 ◊ If PET/CT scan positive, CHOP-21 every 3 weeks x 4 cycles

- For CD20 negative monomorphic T-cell post-transplant lymphomas, the above regimens recommended for B-cell post-transplant lymphomas are used without rituximab.

Consider prophylaxis for tumor lysis syndrome (See NHODG-B)
See monoclonal antibody and viral reactivation (NHODG-B)

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Reference:
NCCN Guidelines Version 2.2017
Castleman’s Disease

DIAGNOSIS\(^{a,b,c}\)

<table>
<thead>
<tr>
<th>ESSENTIAL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematopathology review of all slides with at least one paraffin block representative of the lymphoproliferative disorder. Rebiopsy if consult material is nondiagnostic.</td>
</tr>
<tr>
<td>An FNA or core needle biopsy alone is not generally suitable for initial diagnosis of Castleman’s disease. Excisional or incisional biopsy are preferable.</td>
</tr>
<tr>
<td>Adequate immunophenotyping to establish diagnosis</td>
</tr>
<tr>
<td>IHC panel: kappa/lambda, CD20, CD3, CD5, CD138, HHV8</td>
</tr>
<tr>
<td>EBER-ISH</td>
</tr>
</tbody>
</table>

USEFUL UNDER CERTAIN CIRCUMSTANCES:

| Molecular analysis to detect: immunoglobulin and TCR gene rearrangements |
| IHC: Ki-67 index; Ig heavy chains, CD10, BCL2, BCL6, cyclin D1, CD21, or CD23, CD38, IRF4/MUM1, PAX5 |
| Cell surface marker analysis by flow cytometry: kappa/lambda, CD19, CD20, CD5, CD23, CD10 |

WORKUP\(^e\)

<table>
<thead>
<tr>
<th>ESSENTIAL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical exam: attention to node-bearing areas, including Waldeyer’s ring, and to size of liver and spleen</td>
</tr>
<tr>
<td>Performance status</td>
</tr>
<tr>
<td>Assess for criteria for active disease(^f)</td>
</tr>
<tr>
<td>CBC, differential, platelets</td>
</tr>
<tr>
<td>Comprehensive metabolic panel</td>
</tr>
<tr>
<td>LDH, CRP, ESR</td>
</tr>
<tr>
<td>Beta-2-microglobulin, serum protein electrophoresis and urine electrophoresis with immunofixation, serum light chains, quantitative immunoglobulins</td>
</tr>
<tr>
<td>HIV ELISA, HHV8 DNA titer by PCR, Hepatitis B testing, EBV DNA titer by PCR</td>
</tr>
<tr>
<td>Whole-body PET/CT scan (preferred) or C/A/P CT with contrast of diagnostic quality</td>
</tr>
<tr>
<td>Pregnancy testing in women of child-bearing age (if chemotherapy or RT planned)</td>
</tr>
</tbody>
</table>

USEFUL UNDER CERTAIN CIRCUMSTANCES

| If HHV8 or HIV positive, screening for concurrent Kaposi’s sarcoma is strongly recommended |
| Bone marrow biopsy + aspirate |
| Neck CT with contrast |
| Echocardiogram or MUGA scan if anthracycline or anthracyclinedione-based regimen is indicated |
| sIL6, sIL10, VEGF, uric acid, ferritin\(^h\) |
| Hepatitis C testing |
| Discussion of fertility issues and sperm banking |

\(^a\)For AIDS-related lymphoma associated with Castleman’s disease, see AIDS-1. For DLBCL-associated with CD in non-HIV patients, see BCEL-1.
\(^b\)There are 2 variants – hyaline vascular (virtually always unicentric, HHV8-) and plasma cell (may be multicentric, often HHV8+, +/- HIV+).
\(^c\)Two types of DLBCL are associated with the HHV8+ PC type: plasmablastic (EBV-) and “germinotropic” (EBV+).
\(^d\)In plasma cell variant HHV8+, plasmablasts are IgM lambda while normal plasma cells are IgG or A polytypic.
\(^e\)If concurrent polyneuropathy and monoclonal plasma cell disorder, a workup for POEMS syndrome is recommended.
\(^f\)See Criteria for Active Disease (CD-A).
\(^g\)Hepatitis B testing is indicated because of the risk of reactivation with immunotherapy + chemotherapy. Tests include hepatitis B surface antigen and core antibody for a patient with no risk factors. For patients with risk factors or previous history of hepatitis B, add e-antigen. If positive, check viral load and consult with gastroenterologist.
\(^h\)Measurement of acute phase reactants maybe helpful in monitoring therapy.
Patients with non-bulky disease may be observed after RT.

Encourage biopsy to rule out transformation to DLBCL or concomitant development of other malignancies or opportunistic infections.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
NCCN Guidelines Version 2.2017

Castleman’s Disease

PRIMARY TREATMENT

- HIV-1(-)/HHV8 (-)
 - Multicentric CD (Criteria for active disease present but no organ failure)
 - Siltuximab or Rituximab ± prednisone
- HIV-1(+) / HHV8(+)/ or HIV-1(-)/HHV8(+)
 - Multicentric CD (Fulminant HHV8(+) ± organ failure)
 - Combination therapy ± rituximab
 - CHOP
 - CVAD
 - CVP
 - Liposomal doxorubicin

Response

- No response

RELAPSED DISEASE

- If siltuximab, continue until progression
- If rituximab, observe and retreat at progression

Response

- No response

- Observation

Relapsed disease

- Treat with alternate primary treatment before moving onto treatment for refractory disease

Refractory or Progressive Disease (CD-4)

- HIV-1(-)/HHV8(+)
 - Siltuximab or Rituximab ± prednisone

Response

- No response

- Observation

- Relapsed disease

- Treat with alternate primary treatment before moving onto treatment for refractory disease

Notes:

- All recommendations are category 2A unless otherwise indicated.
- Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See Criteria for Active Disease (CD-A).

Encourage biopsy to rule out transformation to DLBCL or concomitant development of other malignancies or opportunistic infections.

All HIV+ patients should be on combination antiretroviral therapy (cART).

Occult Kaposi sarcoma (KS) is prevalent in HIV/HHV8+ MCD and may flare after rituximab or prednisone. Consider baseline imaging and direct visualization to screen for pulmonary ± GI KS as well as concurrent KS-directed therapy (ie, addition of liposomal doxorubicin).

Rituximab ± prednisone may repeat without limit if progression ≥6 months after completion of rituximab.
Refractory or Progressive Disease

<table>
<thead>
<tr>
<th>Refractory or progressive disease</th>
<th>Single-agent therapy (preferred) or Combination therapy ± rituximab if not previously given</th>
<th>No response</th>
<th>Treat with alternate combination therapy ± rituximab not previously given</th>
<th>Relapsed/refractory disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>± ganciclovir/valganciclovir if HHV8(+) • Etoposide [oral or IV] • Vinblastine • Liposomal doxorubicin</td>
<td></td>
<td>Relapsed/refractory disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Consider alternative single-agent or combination therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>→ Bortezomib ± rituximab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>→ Tocilizumab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>→ Anakinra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>→ Thalidomide ± rituximab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>→ Lenalidomide ± rituximab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>→ High-dose zidovudine + valganciclovir</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Autologous hematopoietic stem cell transplant</td>
<td></td>
</tr>
</tbody>
</table>

Response Assessment

1. Response assessment using the imaging modalities performed during workup (C/A/P CT with contrast or PET/CT).
2. Encourage biopsy to rule out transformation to DLBCL or concomitant development of other malignancies or opportunistic infections.
3. Single-agent therapy is preferred for asymptomatic patients with no organ failure; combination therapy is preferred for patients with fulminant disease and organ failure.

Note

- All recommendations are category 2A unless otherwise indicated.
- Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
CRITERIA FOR ACTIVE DISEASEa

- Fever
- Increased serum C-reactive protein level >20 mg/L in the absence of any other etiology
- At least three of the following other MCD-related symptoms
 - Peripheral lymphadenopathy
 - Enlarged spleen
 - Edema
 - Pleural effusion
 - Ascites
 - Cough
 - Nasal obstruction
 - Xerostomia
 - Rash
 - Central neurologic symptoms
 - Jaundice
 - Autoimmune hemolytic anemia

USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMS

(GO BE USE IN CONJUNCTION WITH CLINICAL AND MORPHOLOGIC CORRELATION)

GENERAL PRINCIPLES

• Morphology ± clinical features drive both the choice and the interpretation of special studies.
• Differential diagnosis is based on morphology ± clinical setting.
• Begin with a broad panel appropriate to morphologic diagnosis, limiting panel of antibodies based on the differential diagnosis.
 ▶ Avoid “shotgun” panels of unnecessary antibodies unless a clinically urgent situation warrants.
• Add antigens in additional panels, based on initial results.
• Follow with genetic studies as needed.
• Return to clinical picture if immunophenotype + morphology are not specific.

Continued on next page (NHODG-A 2 of 11)
USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMS

(TO BE USED IN CONJUNCTION WITH CLINICAL AND MORPHOLOGIC CORRELATION)

B-cell antigens positive\(^{b,c}\) (CD19, CD20, CD79a, PAX5)

- **Morphology**
 - **Cytology**
 - Small cells
 - Medium-sized cells
 - Large cells
 - **Pattern**
 - Diffuse
 - Nodular, follicular, mantle, marginal
 - Sinuses
 - **Clinical**
 - Age (child, adult)
 - Location
 - Nodal
 - Extranodal, specific site
 - **Immunophenotype**
 - Naive B cells: CD5, CD23
 - GCB cells: CD10, BCL6,
 - FDC: CD21, CD23
 - Post-GCB cells: IRF4/MUM1, CD138
 - Immunoglobulin heavy and light chains (surface, cytoplasmic, class switch, light chain type)
 - Oncogene products: BCL2, cyclin D1, MYC, BCL6, ALK
 - Viruses: EBV, HHV8
 - Other: CD43, Ki-67
 - **Genetic testing**
 - BCL2, BCL6, CCND1, MYC, ALK, MYD88, BRAF, IG rearrangement

T- or NK/T-cell antigens positive\(^{b,c}\) (CD2, CD3, CD5, CD7)

- **Morphology**
 - Anaplastic vs. non-anaplastic
 - Epidermotropic
- **Clinical**
 - Age (child, adult)
 - Location
 - Cutaneous
 - Extranodal noncutaneous (specific site)
 - Nodal
 - **Immunophenotype**
 - CD30, ALK\(^*\), CD56, βF1, cytotoxic granule proteins
 - CD4, CD8, CD5, CD7, TCR\(\alpha\), TCR\(\gamma\), CD1a, TdT
 - Follicular T-cells: CD10, BCL6, CD57, PD1/CD279
 - Viruses: EBV, HTLV1 (clonal)
 - **Genetic testing**
 - ALK, TCR, HTLV1

\(^{a}\)These are meant to be general guidelines. Interpretation of results should be based on individual circumstances and may vary. Not all tests will be required in every case.

\(^{b}\)Some lymphoid neoplasms may lack pan leukocyte (CD45), pan-B, and pan-T antigens. Selection of additional antibodies should be based on the differential diagnosis generated by morphologic and clinical features (eg, plasma cell myeloma, ALK+ DLBCL, plasmablastic lymphoma, anaplastic large cell lymphoma, NK-cell lymphomas).

\(^{c}\)Usually 1 Pan-B (CD20) and 1 Pan-T (CD3) markers are done unless a terminally differentiated B-cell or a specific PTCL is suspected.
USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMS\(^a\)

(TO BE USED IN CONJUNCTION WITH CLINICAL AND MORPHOLOGIC CORRELATION)

INITIAL MORPHOLOGIC, CLINICAL, AND IMMUNOPHENOTYPIC ANALYSIS

![Diagram]

\(^a\)These are meant to be general guidelines. Interpretation of results should be based on individual circumstances and may vary. Not all tests will be required in every case.

\(^d\)Initial panel will often include additional markers based on morphologic differential diagnosis and clinical features.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
B-CELL NEOPLASMS

Small cells

- Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL)
- Mantle cell lymphoma (MCL)
- Splenic marginal zone lymphoma (SMZL)
- Hairy cell leukemia (HCL)
- Lymphoplasmacytic lymphoma (LPL)
- Extranodal marginal zone lymphoma (MALT lymphoma) (EMZL)
- Nodal marginal zone lymphoma (NMZL)
- Follicular lymphoma (FL)
- Pediatric-type follicular lymphoma (PTFL)

NOTE:
- Use of immunophenotyping/genetic testing in differential diagnosis of mature B-cell and NK/T-cell neoplasms.
- These are meant to be general guidelines. Interpretation of results should be based on individual circumstances and may vary. Not all tests will be required in every case.
- Flow cytometry on blood or bone marrow done only if HCL is in differential diagnosis by morphology.
- Rare cases of HCL may be CD10+ or CD5+ and some cases of FL are CD10-.
- BCL6 is a useful discriminate if needed (rarely). Rare cases of MCL are CD5-.

LEGEND:
- Panel: CD5, CD10, CD21, CD23, cyclin D1, BCL2, BCL6, Ki-67, CD11c, (CD25, CD103)
- Flow cytometry on blood or bone marrow done only if HCL is in differential diagnosis by morphology.
- Rare cases of HCL may be CD10+ or CD5+ and some cases of FL are CD10-.
- BCL6 is a useful discriminate if needed (rarely). Rare cases of MCL are CD5-.
- Cyclin D1- t(11;14)- trisomy 12 del(11q) del(13q) del(17p)
- Confirmation with BRAF sequencing or IHC for mutant protein

B-CELL NEOPLASMS

Small cells:

- Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL)
- Mantle cell lymphoma (MCL)
- Splenic marginal zone lymphoma (SMZL)
- Hairy cell leukemia (HCL)
- Lymphoplasmacytic lymphoma (LPL)
- Extranodal marginal zone lymphoma (MALT lymphoma) (EMZL)
- Nodal marginal zone lymphoma (NMZL)
- Follicular lymphoma (FL)
- Pediatric-type follicular lymphoma (PTFL)

NOTE:
- Use of immunophenotyping/genetic testing in differential diagnosis of mature B-cell and NK/T-cell neoplasms.
- These are meant to be general guidelines. Interpretation of results should be based on individual circumstances and may vary. Not all tests will be required in every case.
- Flow cytometry on blood or bone marrow done only if HCL is in differential diagnosis by morphology.
- Rare cases of HCL may be CD10+ or CD5+ and some cases of FL are CD10-.
- BCL6 is a useful discriminate if needed (rarely). Rare cases of MCL are CD5-.
- Cyclin D1- t(11;14)- trisomy 12 del(11q) del(13q) del(17p)
- Confirmation with BRAF sequencing or IHC for mutant protein
USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMS
(TO BE USED IN CONJUNCTION WITH CLINICAL AND MORPHOLOGIC CORRELATION)

B-CELL NEOPLASMS

CD5+

Cyclin D1+

MCL,m blastoid variant

CD5-

Cyclin D1-

BCL6+/-

IRF4/MUM1+/-

- CLL with increased prolymphocytes
- DLBCL, NOS CD5+
- If BCL6- IRF4/MUM1-, consider cyclin D1- MCL

Medium cells

± starry sky patternk

Initial Panel:
CD5, CD10, cyclin D1, BCL2, BCL6, Ki-67l

CD10+

BCL6+

BCL2-

FISH for MYC, BCL2, BCL6

CD10-

BCL6+

BCL2+/

FISH for MYC, BCL2, BCL6

BCL6-

Consider plasma cell neoplasm

BCL6+/

BCL2+/

IRF4/MUM1+/

U-DLBCL/BL

MYC+

BCL2-/

BCL6-

BLn

MYC+/-

BCL2+/

BCL6+/

U-DLBCL/BL

FISH for MYC, BCL2, BCL6
to check for “double hit”

Medium cells

- Burkitt lymphoma (BL)
- Diffuse large B-cell lymphoma (DLBCL)
- Mantle cell lymphoma (MCL), blastoid variant
- B-cell lymphoma (BCL), unclassifiable, intermediate between DBLCL and BL (U-DLBCL/BL)

aThese are meant to be general guidelines. Interpretation of results should be based on individual circumstances and may vary. Not all tests will be required in every case.

kStarry sky pattern is typically present in BL and frequently in U-DLBCL/BL.

lKi-67 is a prognostic factor in some lymphomas (e.g., mantle cell and is typically >90% in Burkitt lymphoma). It is not useful in predicting the presence of MYC rearrangement or in classification.

mRare MCL may be cyclin D1-.

nRare BL may lack detectable MYC rearrangement. Correlation with morphology and clinical features is essential.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
B-CELL NEOPLASMS

Large cells:
- Diffuse large B-cell lymphoma (DLBCL), NOS
 ▪ Germinal center B-cell type
 ▪ Non-germinal center B-cell type
 ▪ T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL)
 ▪ Primary DLBCL of the CNS
 ▪ Primary cutaneous DLBCL, leg type
 ▪ EBV-positive DLBCL, NOS (EBV + DLBCL)
- DLBCL associated with chronic inflammation
- Lymphomatoid granulomatosis
- Primary mediastinal (thymic) large B-cell lymphoma (PMBL)
- Intravascular large B-cell lymphoma
- ALK-positive large B-cell lymphoma
- Plasmablastic lymphoma
- HHV8+ Large B-cell lymphoma NOS
- Large B-cell Lymphoma (LBCL) with IRF4 rearrangement
- Primary effusion lymphoma
- B-cell lymphoma, unclassifiable, intermediate between DLBCL (U-DLBCL) and classical Hodgkin lymphoma (CHL)
- Mantle cell lymphoma (MCL), pleomorphic variant

USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMS

(TO BE USED IN CONJUNCTION WITH CLINICAL AND MORPHOLOGIC CORRELATION)

Large cells:

- CD5+, Cyclin D1+ --> Pleomorphic MCL
- CD5+, Cyclin D1- --> DLBCL, NOS CD5+
- CD5+, IRF4/MUM1+ --> LBCL with IRF4 rearrangements (Confirm by cytogenetics or FISH)
- CD5-, Cyclin D1+ --> DLBCL, NOS GCB type (BCL6+), BCL6+, IRF4/MUM1+
- CD5-, Cyclin D1- --> DLBCL, NOS GCB type (BCL6+), BCL6-, IRF4/MUM1+
- CD10+ --> Non-GCB
- CD10- --> Post-GCB

GCB = Germinal center B-cell like

Panel: CD20, PAX5, CD138, ALK, CD30, CD15, EBV-EBER, HHV8, Ig light and heavy chains (If further characterization is warranted based on clinical or morphologic features. The specific panel will vary depending on the differential diagnosis.)

Continued on next page

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

© National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMS\
(TO BE USED IN CONJUNCTION WITH CLINICAL AND MORPHOLOGIC CORRELATION)

Large cells (continued)

- **CD30 -**
 - T-cell-rich: THRLBCL (May be BCL6+, IRF4/MUM1-)
 - DLBCL, non-GCB

- **CD30 +**
 - Mediastinal: PMBL (May be BCL6+, IRF4/MUM1-)
 - Morphologically borderline with CHL
 - **CD15-**
 - PMBL
 - **CD15+**
 - U-DLBCL/CHL

- **CD20+ (PAX5+)**
 - Elderly or immunosuppressed: EBV + DLBCL
 - Extraneural, T-cell rich, angiocentric: Lymphomatoid granulomatosis
 - Chronic inflammation: DLBCL associated with chronic inflammation
 - **EBER+**
 - **HHV8+**
 - HHV8+ LBCL NOS (IgM lambda +) confirm by morphology
 - **EBV+/- HHV8-**
 - **EBV+/- HHV8+**
 - **EBV- ALK+**
 - **EBV- ALK- HHV8-**

- **CD20- (PAX5-) CD79a+ IRF4/MUM1+**
 - CD138+/
 - **EBV+/- HHV8-**
 - **EBV+/- HHV8+**
 - **EBV- ALK+**
 - **EBV- ALK- HHV8-**

- **CD20- (PAX5-) CD79a+ IRF4/MUM1+**

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

These are meant to be general guidelines. Interpretation of results should be based on individual circumstances and may vary. Not all tests will be required in every case.
USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMSa
(TO BE USED IN CONJUNCTION WITH CLINICAL AND MORPHOLOGIC CORRELATION)

B-CELL NEOPLASMS

Cutaneous localization → Panel: CD3, CD5, CD10, BCL2, BCL6, IRF4/MUM1, CD21/23 (FDC markers)

CD10+ → PCFCL

BCL2- →

BCL2+ →

FDC = Follicular dendritic cells

- Primary cutaneous marginal zone lymphoma (PCMZL)
- Primary cutaneous follicle center lymphoma (PCFCL)
- Primary cutaneous DLBCL, leg type (PC-DLBCL, leg type)

These are meant to be general guidelines. Interpretation of results should be based on individual circumstances and may vary. Not all tests will be required in every case.

aThese are assessed both in follicles (if present) and in intrafollicular/diffuse areas. CD10+ BCL6 + germinal centers are present in PCMZL, while both follicular and interfollicular/diffuse areas (tumor cells) are positive for BCL6+/- CD10 in PCFCL.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMS

(TO BE USED IN CONJUNCTION WITH CLINICAL AND MORPHOLOGIC CORRELATION)

T-CELL NEOPLASMS

- **Anaplastic morphology**
 - Anaplastic large cell lymphoma (ALCL), ALK positive
 - Anaplastic large cell lymphoma (ALCL), ALK negative
 - Adult T-cell leukemia/lymphoma (ATLL), anaplastic large cell type
 - Enteropathy-associated T-cell lymphoma (EATL)
 - Primary cutaneous CD30-positive T-cell lymphoproliferative disorders
 - Lymphomatoid papulosis (LyP)
 - Primary cutaneous anaplastic large cell lymphoma (PC-ALCL)

These are meant to be general guidelines. Interpretation of results should be based on individual circumstances and may vary. Not all tests will be required in every case.

Rare T-cell lymphomas may be CD20+ or PAX5+. Assessment of other Pan-T and -B markers is essential. The expression of multiple markers of 1 lineage and only 1 of the other lineages supports lineage assignment. PCR analysis may be required to determine lineage in such cases.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMS

(TO BE USED IN CONJUNCTION WITH CLINICAL AND MORPHOLOGIC CORRELATION)

T-CELL NEOPLASMS

Cutaneous localization (non-anaplastic morphology)

Panel: CD2, CD5, CD7, CD4, CD8, CD30, CD56, βF1, TCRγ, cytotoxic granule proteins (CGP = perforin, granzyme B, TIA1), EBV-EBER; Optional: CD25, CD279

- CD30+ strong, all cells
- CD30- or focal

Epidermotropic

- CD4+
- CD8+
- CD8-
- CD56+
- CD56-
- βF1+
- βF1-

Dermis and subcutis

- CD4+
- CD4-
- CD8+
- CD8-
- CD56+
- CD56-
- βF1+
- βF1-

Cutaneous localization (non-anaplastic morphology)

- Primary cutaneous CD30-positive T-cell lymphoproliferative disorders (LPD)
- Mycosis fungoides, Sézary syndrome (MF, SS)
- Subcutaneous panniculitis-like T-cell lymphoma (SCPTCL)
- Primary cutaneous gamma-delta T-cell lymphoma (γδTCL)
- Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma (AECTCL)
- Primary cutaneous CD4-positive small/medium T-cell lymphoproliferative disorder
- Primary cutaneous acral CD8-positive T-cell lymphoma
- Extranodal NK/T-cell lymphoma, nasal type
- Peripheral T-cell lymphoma, NOS
- Blastic plasmacytoid dendritic cell (BPDC) neoplasm

CD8+ AECTCLr,s (CD2- CD5- CD7+/CD8+ TCRγ+ CGP+)

Primary cutaneous acral TCL (CD2+ CD5+ CD30-TIA1+ other cytotoxic granules- Ki67<10%)

Cutaneous γδTCL (CD2+ CD5- CD7+/- CD56+/- βF1+ CGP+) (dermis and subcutis often involved)

Consider myeloid sarcoma (may be CD2+ CD7+ CD56+ or BPDC (CD3- CD5- CD123+ CD68+ TCL1+)

Small/med cells = CD4+ small/medium CTCL/T-cell pseudolymphoma (CD279+)

Med/large cells = PTCL, NOS

CD8 + MF,r SS (CD2+ CD5+ CD7- CD8- βF1+ CGP-)

CD8+ + ATLL

HTLV1 + = ATLL

CD8+ AECTCLr,s (CD2- CD5- CD7+/CD8+ TCRγ+ CGP+)

Primary cutaneous acral TCL (CD2+ CD5+ CD30-TIA1+ other cytotoxic granules- Ki67<10%)

Cutaneous γδTCL (CD2+ CD5- CD7+/- CD56+/- βF1+ CGP+) (dermis and subcutis often involved)

Consider myeloid sarcoma (may be CD2+ CD7+ CD56+ or BPDC (CD3- CD5- CD123+ CD68+ TCL1+)

Small/med cells = CD4+ small/medium CTCL/T-cell pseudolymphoma (CD279+)

Med/large cells = PTCL, NOS

βF1+ SCPTCL (CD2+ CD5- CD7+ CD56- CGP+)

Cutaneous γδTCL (CD2+ CD5- CD7+/- CD56+/ CGP+)

βF1+ PTCL-NOS

EBV+ ENK/TL nasal type (CD2+ CD7- CD56+ CGP+, TCRγ-)

EBV- Cutaneous γδTCL (CD2+ CD5- CD7+/- CD56+/ CGP+, TCRγ+)

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

© National Comprehensive Cancer Network, Inc. 2017, All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.
USE OF IMMUNOPHENOTYPING/GENETIC TESTING IN DIFFERENTIAL DIAGNOSIS OF MATURE B-CELL AND NK/T-CELL NEOPLASMS

(To be used in conjunction with clinical and morphologic correlation)

Extranodal, noncutaneous localization (non-anaplastic morphology)
- Panel: CD2, CD3, CD4, CD5, CD7, CD8, CD30, CD56, ALK, B8F1, TCRγ, IRF4/MUM1, cytotoxic granule proteins (CGP = perforin, granzyme B, TIA1), EBV-EBER

Extranodal, noncutaneous localization
- Extramedullary NK/T cell lymphoma, nasal type (ENKTCL)
- Enteropathy-associated T-cell lymphoma (EATL)
- Hepatosplenic T-cell lymphoma (HSTCL)
- Peripheral T-cell lymphoma, NOS (PTCL, NOS)
- ALCL, ALK+ small cell and histiocytic-rich variants

Nodal localization (non-anaplastic morphology)
- Panel: CD2, CD3, CD4, CD5, CD7, CD8, CD30, ALK, CD10, BCL6, PD1/CD279, CXCL 13, CD21, CD23, EBV-EBER

Nodal localization
- Adult T-cell leukemia/lymphoma (ATLL)
- Angioimmunoblastic T-cell lymphoma (AITL)
- Peripheral T-cell lymphoma, NOS (PTCL, NOS)
- ALCL, ALK+ small cell and histiocytic-rich variants

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

aThese are meant to be general guidelines. Interpretation of results should be based on individual circumstances and may vary. Not all tests will be required in every case.
SUPPORTIVE CARE FOR B-CELL LYMPHOMAS

Tumor Lysis Syndrome (TLS)

- Laboratory hallmarks of TLS:
 - High potassium
 - High uric acid
 - High phosphorous
 - Low calcium

- Symptoms of TLS:
 - Nausea and vomiting, shortness of breath, irregular heartbeat, clouding of urine, lethargy, and/or joint discomfort.

- High-risk features
 - Histologies of Burkitt lymphoma and lymphoblastic lymphoma; occasionally patients with DLBCL and CLL
 - Spontaneous TLS
 - Elevated WBC
 - Bone marrow involvement
 - Pre-existing elevated uric acid
 - Ineffectiveness of allopurinol
 - Renal disease or renal involvement by tumor

- Treatment of TLS:
 - TLS is best managed if anticipated and treatment is started prior to chemotherapy.
 - Centerpiece of treatment includes
 - Rigorous hydration
 - Management of hyperuricemia
 - Frequent monitoring of electrolytes and aggressive correction is essential
 - First-line and at retreatment for hyperuricemia
 - Allopurinol beginning 2–3 days prior to chemotherapy and continued for 10–14 days
 - Rasburicase is indicated for patients with any of the following risk factors:
 - presence of any high-risk feature
 - urgent need to initiate therapy in a high-bulk patient
 - situations where adequate hydration may be difficult or impossible
 - Acute renal failure
 - One dose of rasburicase is frequently adequate. Doses of 3–6 mg are usually effective. Redosing should be individualized.
 - If TLS is untreated, its progression may cause acute kidney failure, cardiac arrhythmias, seizures, loss of muscle control, and death.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Supportive Care for B-Cell Lymphomas

For other immunosuppressive situations, see NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections.

Monoclonal Antibody Therapy and Viral Reactivation

Anti-CD20 Antibody Therapy

Hepatitis B virus (HBV):
- Hepatitis B surface antigen (HBsAg) and Hepatitis B core antibody (HBCab) testing for all patients receiving anti-CD20 antibody therapy
- Quantitative hepatitis B viral load by PCR and surface antibody only if one of the screening tests is positive
- **Note:** Patients receiving IV immunoglobulin (IVIG) may be HBCab-positive as a consequence of IVIG therapy.
- Prophylactic antiviral therapy with entecavir is recommended for any patient who is HBsAg-positive and receiving anti-lymphoma therapy. If there is active disease (PCR+), it is considered treatment/management and not prophylactic therapy. In cases of HBCab positivity, prophylactic antiviral therapy is preferred; however, if there is a concurrent high-level hepatitis B surface antibody, these patients may be monitored with serial hepatitis B viral load.
 - Avoid lamivudine due to risks of resistance development.
 - Other antivirals including adefovir, telbivudine, and tenofovir are proven active treatments and are acceptable alternatives.
 - Monitor hepatitis B viral load with PCR monthly through treatment and every 3 months thereafter
 - If viral load is consistently undetectable, treatment is considered prophylactic
 - If viral load fails to drop or previously undetectable PCR becomes positive, consult hepatologist and discontinue anti-CD20 antibody therapy
 - Maintain prophylaxis up to 12 mo after oncologic treatment ends
 - Consult with hepatologist for duration of therapy in patient with active HBV

Hepatitis C virus (HCV):
- New evidence from large epidemiology studies, molecular biology research, and clinical observation supports an association of HCV and B-cell NHL. Recently approved direct-acting antiviral agents (DAA) for chronic carriers of HCV with genotype 1 demonstrated a high rate of sustained viral responses.
 - **Low-grade B-cell NHL**
 - According to the American Association for the Study of Liver Diseases, combined therapy with DAA should be considered in asymptomatic patients with HCV genotype 1 since this therapy can result in regression of lymphoma.
 - **Aggressive B-cell NHL**
 - Patients should be initially treated with chemoimmunotherapy regimens according to NCCN Guidelines for NHL.
 - Liver functional tests and serum HCV RNA levels should be closely monitored during and after chemoimmunotherapy for development of hepatotoxicity.
 - Antiviral therapy should be considered in patients in complete remission after completion of lymphoma therapy.

Anti-CD20 Antibody Therapy and Brentuximab Vedotin

Progressive multifocal leukoencephalopathy (PML):
- Caused by the JC virus and is usually fatal.
- Diagnosis made by PCR of CSF and in some cases brain biopsy.
- No known effective treatment.
- Clinical indications may include changes in behavior such as confusion, dizziness or loss of balance, difficulty talking or walking, and vision problems.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SUPPORTIVE CARE FOR B-CELL LYMPHOMAS

Monoclonal Antibody Therapy and Viral Reactivation (continued)

Anti-CD52 Antibody Therapy: Alemtuzumab
Cytomegalovirus (CMV) reactivation:
• The current appropriate management is controversial; some NCCN Member Institutions use ganciclovir (oral or IV) preemptively if viremia is present, others only if viral load is rising.
• CMV viremia should be measured by quantitative PCR at least every 2 to 3 weeks.
• Consultation with an infectious disease expert may be necessary. See NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections.

Rare Complications of Monoclonal Antibody Therapy
• Rare complications such as mucocutaneous reactions including paraneoplastic pemphigus, Steven-Johnson syndrome, lichenoid dermatitis, vesiculobullous dermatitis, and toxic epidermal necrolysis can occur. Expert consultation with dermatology is recommended.

Rituximab Rapid Infusion
• If no infusion reactions were experienced with prior cycle of rituximab, a rapid infusion over 90 minutes can be used.

Renal Dysfunction Associated with Methotrexate
• Consider use of glucarpidase if significant renal dysfunction and methotrexate levels are >10 microM beyond 42 to 48 hours. Leucovorin remains a component in the treatment of methotrexate toxicity and should be continued for at least 2 days following glucarpidase administration. However, be aware that leucovorin is a substrate for glucarpidase, and therefore should not be administered within two hours prior to or following glucarpidase.
LUGANO RESPONSE CRITERIA FOR NON-HODGKIN’S LYMPHOMA

PET should be done with contrast-enhanced diagnostic CT and can be done simultaneously or at separate procedures.

<table>
<thead>
<tr>
<th>Response</th>
<th>Site</th>
<th>PET-CT (Metabolic response)</th>
<th>CT (Radiologic response)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph nodes and extralymphatic sites</td>
<td>Score 1, 2, or 3(^a) with or without a residual mass on 5 point scale (5-PS)(^b, c)</td>
<td>All of the following: Target nodes/nodal masses must regress to ≤1.5 cm in longest transverse diameter of a lesion (LDi) No extralymphatic sites of disease</td>
<td></td>
</tr>
<tr>
<td>Non-measured lesion</td>
<td>Not applicable</td>
<td>Absent</td>
<td></td>
</tr>
<tr>
<td>Organ enlargement</td>
<td>Not applicable</td>
<td>Regress to normal</td>
<td></td>
</tr>
<tr>
<td>New Lesions</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>No evidence of FDG-avid disease in marrow</td>
<td>Normal by morphology; if indeterminate, and flow cytometry IHC negative</td>
<td></td>
</tr>
<tr>
<td>Partial response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymph nodes and extralymphatic sites</td>
<td>Score 4 or 5(^b) with reduced uptake compared with baseline. No new or progressive lesions. At interim these findings suggest responding disease. At end of treatment these findings may indicate residual disease.</td>
<td>All of the following: ≥50% decrease in SPD of up to 6 target measurable nodes and extranodal sites When a lesion is too small to measure on CT, assign 5mm x 5mm as the default value. When no longer visible, 0x0 mm For a node >5mm x 5mm, but smaller than normal, use actual measurement for calculation</td>
<td></td>
</tr>
<tr>
<td>Non-measured lesion</td>
<td>Not applicable</td>
<td>Absent/normal, regressed, but no increase</td>
<td></td>
</tr>
<tr>
<td>Organ enlargement</td>
<td>Not applicable</td>
<td>Spleen must have regressed by >50% in length beyond normal</td>
<td></td>
</tr>
<tr>
<td>New Lesions</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>Residual uptake higher than uptake in normal marrow but reduced compared with baseline (diffuse uptake compatible with reactive changes from chemotherapy allowed). If there are persistent focal changes in the marrow in the context of a nodal response, consider further evaluation with biopsy, or an interval scan.</td>
<td>Not applicable</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes on NHODG-C 3 of 3

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
LUGANO RESPONSE CRITERIA FOR NON-HODGKIN'S LYMPHOMA

PET should be done with contrast-enhanced diagnostic CT and can be done simultaneously or at separate procedures.

<table>
<thead>
<tr>
<th>Response</th>
<th>Site</th>
<th>PET-CT (Metabolic response)</th>
<th>CT (Radiologic response)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No response or stable disease</td>
<td>Target nodes/nodal masses, extranodal lesions</td>
<td>Score 4 or 5(^b) with no significant change in FDG uptake from baseline at interim or end of treatment. No new or progressive lesions</td>
<td><50% decrease from baseline in SPD of up to 6 dominant, measurable nodes and extranodal sites; no criteria for progressive disease are met</td>
</tr>
<tr>
<td></td>
<td>Non-measured lesion</td>
<td>Not applicable</td>
<td>No increase consistent with progression</td>
</tr>
<tr>
<td></td>
<td>Organ enlargement</td>
<td>Not applicable</td>
<td>No increase consistent with progression</td>
</tr>
<tr>
<td></td>
<td>New Lesions</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Bone Marrow</td>
<td>No change from baseline</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Progressive disease

<table>
<thead>
<tr>
<th>Site</th>
<th>PET-CT (Metabolic response)</th>
<th>CT (Radiologic response)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual target nodes/nodal masses Extranodal lesions</td>
<td>Score 4 or 5(^b) with an increase in intensity of uptake from baseline and/or New FDG-avid foci consistent with lymphoma at interim or end-of-treatment assessment(^e)</td>
<td>Requires at least one of the following PPD progression: An individual node/lesion must be abnormal with: LDI >1.5 cm and Increase by ≥50% from PPD nadir and An increase in LDI or SDI from nadir 0.5 cm for lesions <2 cm 1.0 cm for lesions ≥2 cm In the setting of splenomegaly, the splenic length must increase by >50% of the extent of its prior increase beyond baseline. If no prior splenomegaly, must increase by at least 2 cm from baseline New or recurrent splenomegaly</td>
</tr>
<tr>
<td>Non-measured lesion</td>
<td>None</td>
<td>New or clear progression of preexisting nonmeasured lesions</td>
</tr>
<tr>
<td>New Lesions</td>
<td>New FDG-avid foci consistent with lymphoma rather than another etiology (eg, infection, inflammation). If uncertain regarding etiology of new lesions, biopsy or interval scan may be considered(^e)</td>
<td>Regrowth of previously resolved lesions A new node >1.5 cm in any axis A new extranodal site >1.0 cm in any axis; if <1.0 cm in any axis, its presence must be unequivocal and must be attributable to lymphoma Assessable disease of any size unequivocally attributable to lymphoma</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>New or recurrent FDG-avid foci</td>
<td>New or recurrent involvement</td>
</tr>
</tbody>
</table>

Footnotes on NHODG-C 3 of 3

- All recommendations are category 2A unless otherwise indicated.
- Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

LUGANO RESPONSE CRITERIA FOR NON-HODGKIN’S LYMPHOMA

Footnotes

a Score 3 in many patients indicates a good prognosis with standard treatment, especially if at the time of an interim scan. However, in trials involving PET where de-escalation is investigated, it may be preferable to consider score 3 as an inadequate response (to avoid under-treatment).

b See PET Five Point Scale (5-PS).

c It is recognized that in Waldeyer’s ring or extranodal sites with high physiological uptake or with activation within spleen or marrow, e.g. with chemotherapy or myeloid colony stimulating factors, uptake may be greater than normal mediastinum and/or liver. In this circumstance, CMR may be inferred if uptake at sites of initial involvement is no greater than surrounding normal tissue even if the tissue has high physiological uptake.

d FDG-avid lymphomas should have response assessed by PET-CT. Diseases that can typically be followed with CT alone include CLL/SLL and marginal zone lymphomas.

e False-positive PET scans may be observed related to infectious or inflammatory conditions. Biopsy of affected sites remains the gold standard for confirming new or persistent disease at end of therapy.

PET Five Point Scale (5-PS)

1 No uptake above background
2 Uptake ≤ mediastinum
3 Uptake > mediastinum but ≤ liver
4 Uptake moderately > liver
5 Uptake markedly higher than liver and/or new lesions
X New areas of uptake unlikely to be related to lymphoma

SPD – sum of the product of the perpendicular diameters for multiple lesions
LDi – Longest transverse diameter of a lesion
SDi – Shortest axis perpendicular to the LDi
PPD – Cross product of the LDi and perpendicular diameter

Measured dominant lesions – Up to 6 of the largest dominant nodes, nodal masses and extranodal lesions selected to be clearly measurable in 2 diameters. Nodes should preferably be from disparate regions of the body, and should include, where applicable, mediastinal and retroperitoneal areas. Non-nodal lesions include those in solid organs, e.g., liver, spleen, kidneys, lungs, etc, gastrointestinal involvement, cutaneous lesions of those noted on palpation.

Non-measured lesions – Any disease not selected as measured, dominant disease and truly assessable disease should be considered not measured. These sites include any nodes, nodal masses, and extranodal sites not selected as dominant, measurable or which do not meet the requirements for measurability, but are still considered abnormal. As well as truly assessable disease which is any site of suspected disease that would be difficult to follow quantitatively with measurement, including pleural effusions, ascites, bone lesions, leptomeningeal disease, abdominal masses and other lesions that cannot be confirmed and followed by imaging.

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF RADIATION THERAPY

• Treatment with photons, electrons, or protons may all be appropriate, depending on clinical circumstances.
• Advanced radiation therapy technologies such as IMRT, breath hold or respiratory gating, image-guided therapy, or proton therapy may offer significant and clinically relevant advantages in specific instances to spare important organs at risk such as the heart (including coronary arteries and valves), lungs, kidneys, spinal cord, esophagus, bone marrow, breasts, stomach, muscle/soft tissue, and salivary glands and decrease the risk for late, normal tissue damage while still achieving the primary goal of local tumor control. Achieving highly conformal dose distributions is especially important for patients who are being treated with curative intent or who have long life expectancies following therapy.
• The demonstration of significant dose-sparing for these organs at risk reflects best clinical practice.
• In mediastinal lymphoma, the use of 4D-CT for simulation and the adoption of strategies to deal with respiratory motion such as inspiration breath-hold techniques, and image guided RT during treatment delivery is also important.
• Since the advantages of these techniques include tightly conformal doses and steep gradients next to normal tissues, target definition and delineation and treatment delivery verification require careful monitoring to avoid the risk of tumor geographic miss and subsequent decrease in tumor control. Image guidance may be required to provide this assurance.
• Randomized studies to test these concepts are unlikely to be done since these techniques are designed to decrease late effects, which take 10+ years to evolve. In light of that, the modalities and techniques that are found to best reduce the doses to the organs at risk (OAR) in a clinically meaningful way without compromising target coverage should be considered.

See references on NHODG-D 4 of 4.
PRINCIPLES OF RADIATION THERAPY

Volumes:

• Involved-site radiation therapy (ISRT) for nodal disease
 ‣ ISRT is recommended as the appropriate field for NHL. Planning for ISRT requires modern CT-based simulation and planning capabilities.
 ‣ Incorporating other modern imaging like PET and MRI often enhances treatment volume determination.
 ‣ ISRT targets the site of the originally involved lymph node(s). The volume encompasses the original suspicious volume prior to chemotherapy or surgery. Yet, it spares adjacent uninvolved organs (like lungs, bone, muscle, or kidney) when lymphadenopathy regresses following chemotherapy.
 ‣ The pre-chemotherapy or pre-biopsy gross tumor volume (GTV) provides the basis for determining the clinical target volume (CTV). Concerns for questionable subclinical disease and uncertainties in original imaging accuracy or localization may lead to expansion of the CTV and are determined individually using clinical judgment.
 ‣ For indolent NHL, often treated with RT alone, larger fields should be considered. For example, the CTV definition for treating follicular lymphoma with radiation therapy alone will be greater than that employed for DLBCL with similar disease distribution being treated with combined modality therapy.
 ‣ Possible movement of the target by respiration as determined by 4D-CT or fluoroscopy (internal target volume- ITV) should also influence the final CTV.
 ‣ The planning treatment volume (PTV) is an additional expansion of the CTV that accounts only for setup variations (see ICRU definitions).
 ‣ The OAR should be outlined for optimizing treatment plan decisions.
 ‣ The treatment plan is designed using conventional, 3-D conformal, or IMRT techniques using clinical treatment planning considerations of coverage and dose reductions for OAR.

• ISRT for extranodal disease
 ‣ Similar principles as for ISRT nodal sites (see above).
 ‣ For most organs and particularly for indolent disease, the whole organ comprises the CTV (eg, stomach, salivary gland, thyroid). For other organs, including orbit, breast, lung, bone, localized skin, and in some cases when RT is consolidation after chemotherapy, partial organ RT may be appropriate.
 ‣ For most NHL subtypes no radiation is required for uninvolved lymph nodes.

Continued on next page

See references on NHODG-D 4 of 4.
PRINCIPLES OF RADIATION THERAPY

General Dose Guidelines:
- Follicular lymphoma: 24–30 Gy
- Marginal zone lymphoma:
 - Gastric: 30 Gy
 - Other extranodal sites: 24–30 Gy
 - Nodal MZL: 24–30 Gy
- Early-stage mantle cell lymphoma: 30–36 Gy
- Palliation/local control of FL, MZL, MCL: 2 Gy x 2 which may be repeated as needed

- **DLBCL**
 - Consolidation after chemotherapy CR: 30–36 Gy
 - Complimentary after PR: 40–50 Gy
 - RT as primary treatment for refractory or non-candidates for chemotherapy: 40–55 Gy
 - In combination with stem cell transplantation: 20–36 Gy, depending on sites of disease and prior RT exposure

Note: All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

See references on NHODG-D 4 of 4.
PRINCIPLES OF RADIATION THERAPY

REFERENCES

SPECIAL CONSIDERATIONS FOR THE USE OF SMALL-MOLECULE INHIBITORS (IBRUTINIB AND IDELALISIB)1,2,3

IBRUTINIB

- **Dosage**
 - MCL: The recommended dose of ibrutinib is 560 mg PO daily, continuous and should be continued until time of progression.
 - Lymphocytosis
 - MCL: Upon initiation of ibrutinib, transient increase in absolute lymphocyte counts occurred in 33\% of patients. The onset of isolated lymphocytosis occurs during the first few weeks of ibrutinib therapy and resolves by a median of 8 weeks.
 - Grade >2 bleeding events were observed in 6\% of patients on ibrutinib; the mechanism is not well understood. Consider the benefit-risk of ibrutinib in patients requiring anti-platelet or anticoagulant therapies. Clinical trials excluded subjects on concurrent warfarin. Ibrutinib should be held 3 days before and after a minor surgical procedure and 7 days before and after a major surgical procedure. Ibrutinib should not be given concomitantly with warfarin.
 - New onset atrial fibrillation was reported in 6\%–9\%, associated with ibrutinib administration.2
 - Consider non-warfarin anticoagulation
 - Monitor carefully
 - Consider switching to alternate therapy
 - Patients with recurrent atrial fibrillation that is not medically controllable should be changed to idelalisib.
 - Hypertension associated with ibrutinib has been uncommonly reported as a basis for discontinuation and should be managed with anti-hypertensives as appropriate. Ibrutinib should only be discontinued for uncontrollable hypertension.

IDEALALISIB

- The recommended dose of idelalisib is 150 mg PO twice daily, per prescribing recommendations.
- Fatal and/or serious hepatotoxicity, severe diarrhea or colitis, pneumonitis, and intestinal perforation have been observed in patients treated with idelalisib.
 - Hepatotoxicity: Monitor hepatic function prior to and during treatment. Interrupt (if ALT/AST > 5 x ULN [upper limit of normal] and when resolved may resume at a reduced dose (100 mg PO twice daily).
 - Diarrhea or colitis: Monitor for the development of severe diarrhea or colitis. Interrupt until resolution and then reduce or discontinue idelalisib. Severe diarrhea and colitis can be managed with systemic or nonabsorbable steroids.
 - Pneumonitis: Monitor for pulmonary symptoms and bilateral interstitial infiltrates. Discontinue idelalisib.
 - Intestinal perforation: Discontinue idelalisib if intestinal perforation is suspected.
- CMV: Monitor per institutional guidelines or consult with Infectious Disease.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
SPECIAL CONSIDERATIONS FOR THE USE OF SMALL-MOLECULE INHIBITORS (IBRUTINIB AND IDELALISIB)1,2,3

Co-administration with CYP3A inhibitors and inducers2,3

- Avoid concomitant administration of ibrutinib/idelalisib with strong or moderate inhibitors of CYP3A.
 - For strong CYP3A inhibitors used short-term (eg, antifungals and antibiotics for 7 days or less; eg, ketoconazole, itraconazole, voriconazole, posaconazole, clarithromycin, telithromycin) consider interrupting ibrutinib/idelalisib therapy during the duration of inhibitor use. Avoid strong CYP3A inhibitors that are needed chronically.
 - If a moderate CYP3A inhibitor must be used, reduce the ibrutinib/idelalisib dose. Patients taking concomitant strong or moderate CYP3A4 inhibitors should be monitored more closely for signs of ibrutinib/idelalisib toxicity.
- Avoid concomitant use of strong CYP3A inducers (eg, carbamazepine, rifampin, phenytoin, St. John’s Wort). Consider alternative agents with less CYP3A induction.

Note: All recommendations are category 2A unless otherwise indicated.
Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Table 1

WHO Classification of the Mature B-Cell, T-Cell, and NK-Cell Neoplasms (2017)

Mature B-Cell Neoplasms
- Chronic lymphocytic leukemia/small lymphocytic lymphoma
- Monoclonal B-cell lymphocytosis
- B-cell prolymphocytic leukemia
- Splenic marginal zone lymphoma
- Hairy cell leukemia
- Splenic lymphoma/leukemia, unclassifiable*
 - Splenic diffuse red pulp small B-cell lymphoma*
 - Hairy cell leukemia-variant*
- Lymphoplasmacytic lymphoma
- Waldenström's macroglobulinemia
- Monoclonal gammopathy of undetermined significance (MGUS), IgM
- Mu heavy chain disease
- Gamma heavy chain disease
- Alpha heavy chain disease
- Monoclonal gammopathy of undetermined significance (MGUS), IgG/A
- Plasma cell myeloma
- Solitary plasmacytoma of bone
- Extramedullary plasmacytoma
- Monoclonal immunoglobulin deposition diseases
- Extramedullary marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT type)
- Nodal marginal zone lymphoma
 - *Pediatric nodal marginal zone lymphoma*
- Follicular lymphoma
 - In situ follicular neoplasia
 - Duodenal-type follicular lymphoma
- Pediatric-type follicular lymphoma
- Large B-cell lymphoma with IRF4 rearrangement
- Primary cutaneous follicle center lymphoma

Continued on next page

- Mantle cell lymphoma
 - In situ mantle cell neoplasia
- Diffuse large B-cell lymphoma (DLBCL), NOS
 - Germinal center B-cell type
 - Activated B-cell type
- T-cell/histiocyte-rich large B-cell lymphoma
- Primary DLBCL of the central nervous system (CNS)
- Primary cutaneous DLBCL, leg type
- EBV-positive DLBCL, NOS
- *EBV-positive mucocutaneous ulcer*
- DLBCL associated with chronic inflammation
- Lymphomatoid granulomatosis
- Primary mediastinal (thymic) large B-cell lymphoma
- Intravascular large B-cell lymphoma
- ALK-positive large B-cell lymphoma
- Plasmablastic lymphoma
- Primary effusion lymphoma
- *HHV8-positive DLBCL, NOS*
- Burkitt lymphoma
- *Burkitt-like lymphoma with 11q aberration*
- High-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements
- High-grade B-cell lymphoma, NOS
- B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and classical Hodgkin lymphoma

*Provisional entities are listed in italics.
Classification

WHO Classification of the Mature B-Cell, T-Cell, and NK-Cell Neoplasms (2017)

Mature T-Cell and NK-Cell Neoplasms

- T-cell prolymphocytic leukemia
- T-cell large granular lymphocytic leukemia
- *Chronic lymphoproliferative disorder of NK-cells*[*]
- Aggressive NK-cell leukemia
- Systemic EBV-positive T-cell lymphoma of childhood
- Hydroa vacciniforme–like lymphoproliferative disorder
- Adult T-cell leukemia/lymphoma
- Extramedullary T-cell lymphoma, nasal type
- Enteropathy-associated T-cell lymphoma
- Monomorphic epitheliotropic intestinal T-cell lymphoma[*]
- *Indolent T-cell lymphoproliferative disorder of the GI tract*[*]
- Hepatosplenic T-cell lymphoma
- Subcutaneous panniculitis-like T-cell lymphoma
- Mycosis fungoides
- Sézary syndrome
- Primary cutaneous CD30-positive T-cell lymphoproliferative disorders
 - Lymphomatoid papulosis
 - Primary cutaneous gamma-delta T-cell lymphoma
- Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma[*]
- Primary cutaneous acral CD8-positive T-cell lymphoma[*]
- Primary cutaneous CD4-positive small/medium T-cell lymphoproliferative disorder[*]
- Peripheral T-cell lymphoma, NOS
- Angioimmunoblastic T-cell lymphoma
- Follicular T-cell lymphoma[*]
- *Nodal peripheral T-cell lymphoma with TFH phenotype*[*]
- Anaplastic large-cell lymphoma, ALK positive
- Anaplastic large-cell lymphoma, ALK negative
- Breast implant–associated anaplastic large-cell lymphoma[*]

Hodgkin Lymphoma

- Nodular lymphocyte-predominant Hodgkin lymphoma
- Classical Hodgkin lymphoma
 - Nodular sclerosis classical Hodgkin lymphoma
 - Lymphocyte-rich classical Hodgkin lymphoma
 - Mixed cellularity classical Hodgkin lymphoma
 - Lymphocyte-depleted classical Hodgkin lymphoma

Posttransplant Lymphoproliferative Disorders (PTLD)

- Plasmacytic hyperplasia PTLD
- Infectious mononucleosis-like PTLD
- Florid follicular hyperplasia PTLD
- Polymorphic PTLD
- Monomorphic PTLD (B- and T/NK-cell types)
- Classical Hodgkin lymphoma PTLD

Histiocytic and dendritic cell neoplasms

- Histiocytic sarcoma
- Langerhans cell histiocytosis
- Langerhans cell sarcoma
- Indeterminate dendritic cell tumor
- Interdigitating dendritic cell sarcoma
- Follicular dendritic cell sarcoma
- Fibroblastic reticular cell tumor
- Disseminated juvenile xanthogranuloma
- Erdheim-Chester disease

[*]Provisional entities are listed in italics.

Staging

Lugano Modification of Ann Arbor Staging System*

<table>
<thead>
<tr>
<th>Stage</th>
<th>Involvement</th>
<th>Extranodal (E) status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>One node or a group of adjacent nodes</td>
<td>Single extranodal lesions without nodal involvement</td>
</tr>
<tr>
<td>Stage II</td>
<td>Two or more nodal groups on the same side of the diaphragm</td>
<td>Stage I or II by nodal extent with limited contiguous extranodal involvement</td>
</tr>
<tr>
<td>Stage II bulky**</td>
<td>Il as above with “bulky” disease</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage III</td>
<td>Nodes on both sides of the diaphragm</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Nodes above the diaphragm with spleen involvement</td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>Additional non-contiguous extralymphatic involvement</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

*Extent of disease is determined by PET/CT for avid lymphomas, and CT for non-avid histologies

Note: Tonsils, Waldeyer’s ring, and spleen are considered nodal tissue

**Whether II bulky is treated as limited or advanced disease may be determined by histology and a number of prognostic factors.

Categorization of A versus B has been removed from the Lugano Modification of Ann Arbor Staging.

Discussion

This discussion is being updated to correspond with the newly updated algorithm. Last updated on 05/03/16

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Table of Contents

Overview ... MS-1
Classification .. MS-1
Principles of Radiation Therapy .. MS-7
Diagnosis .. MS-8
Workup .. MS-9
Supportive Care ... MS-10
Follicular Lymphoma ... MS-29
Marginal Zone Lymphomas .. MS-58
Mantle Cell Lymphoma ... MS-79
Diffuse Large B-Cell Lymphoma ... MS-101
Burkitt Lymphoma .. MS-135
AIDS-Related B-Cell Lymphoma .. MS-144
Post-Transplant Lymphoproliferative Disorders .. MS-153
Overview

Non-Hodgkin’s lymphomas (NHL) are a heterogeneous group of lymphoproliferative disorders originating in B-lymphocytes, T-lymphocytes or natural killer (NK) cells. NK/T-cell lymphomas are very rare. In 2015, an estimated 71,850 people will be diagnosed with NHL and there will be approximately 19,790 deaths due to the disease; cases of chronic lymphocytic leukemia (CLL) are estimated separately.\(^1\)

NHL is the seventh leading site of new cancer cases among men and women, accounting for 4% of new cancer cases and 3% of cancer-related deaths.\(^1\) In a prospectively collected data from the National Cancer Data Base, diffuse large B-cell lymphoma (DLBCL; 32.5%), chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; 18.6%), follicular lymphoma (FL; 17.1%), marginal zone lymphomas (MZL; 8.3%), mantle cell lymphoma (MCL; 4.1%) and peripheral T-cell lymphoma not-otherwise-specified (PTCL-NOS; 1.7%) were the major subtypes of NHL diagnosed in the United States between 1998-2011.\(^2\)

The incidence of NHL has increased dramatically between 1970 and 1995; the increase has moderated since the mid-90s. This increase has been attributed partly to the human immunodeficiency virus (HIV) epidemic and the development of AIDS-related NHL. However, much of the increase in incidence has been observed in patients in their sixth and seventh decades; a large part of this increase incidence has paralleled a major decrease in mortality from other causes. The median age of individuals with NHL has risen in the last two decades.\(^3\) As a result, patients with NHL may also have significant comorbid conditions, which complicate treatment options.

The National Comprehensive Cancer Network (NCCN®) Guidelines (NCCN Guidelines\(^5\)) were developed as a result of meetings convened by a multidisciplinary panel of NHL experts, with the aim to provide recommendations for diagnostic workup, treatment, and surveillance strategies for the most common subtypes of NHL, in addition to a general discussion on the classification systems used in NHL and supportive care considerations.

The most common B-cell Lymphoma subtypes that are covered in these NCCN Guidelines are listed below:

- Follicular lymphoma (FL)
- Marginal Zone lymphomas (MZL)
 - Gastric MALT lymphoma
 - Non gastric MALT lymphoma
 - Nodal MZL
 - Splenic MZL
- Mantle cell lymphoma (MCL)
- Diffuse large B-cell lymphoma (DLBCL)
- Burkitt lymphoma (BL)
- AIDS-related B-cell lymphoma
- Post-Transplant Lymphoproliferative Disorders
- Castleman’s Disease

Classification

In 1956, Rappaport et al. proposed a lymphoma classification that was based on the pattern of cell growth (nodular or diffuse), and size and shape of the tumor cells.\(^4,5\) This classification, though widely used in the United states, quickly became outdated with the discovery and the existence of distinct types of lymphocytes (B, T and NK). The Kiel classification became the first and most significant classification that applied this new information to the classification of lymphomas.\(^6,8\)

According to the Kiel classification, the lymphomas were divided into low-grade and high-grade based on the histological features. This
classification was widely used in Europe. The use of different classification systems in clinical studies made it difficult to compare results from clinical studies. Hence, the International Working Formulation (IWF) for NHLs was developed to standardize the classification of lymphomas.

International Working Formulation Classification

The IWF classified NHL into three major categories as low, intermediate and high grade, based on the morphology and natural history. This classification divided DLBCL into intermediate and high grade groups. However, these distinctions were not reproducible. Since this classification did not include immunophenotyping, the categories were not reproducible. In addition, after this classification was published many new diseases were described that were not included in the IWF classification.

Revised European American Classification

In 1994, the International Lymphoma Study Group (ILSG) developed the REAL classification, which classified lymphomas based on the cell of origin (B, T, or NK) and included morphology, immunophenotype, genetic and clinical features to define diseases. In 1997, the International Lymphoma Classification Project performed a clinical evaluation of the Revised European American Classification (REAL) classification in a cohort of 1,403 cases of NHL. The diagnosis of NHL was confirmed in 1,378 (98.2%) of the cases. This study identified the thirteen most common histological types, comprising about 90% of the cases of NHL in the United States. The findings were as follows: DLBCL, 31%; follicular lymphoma (FL), 22%; small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL), 6%; mantle cell lymphoma (MCL), 6%; peripheral T-cell lymphoma (PTCL), 6%; and mucosa associated lymphoid tissue (MALT) lymphoma, 5%. The remaining subtypes each occurred in less than 2% of cases. Importantly, in the United States more than 50% of cases of lymphoma are either DLBCL or FL. The study investigators concluded that the REAL classification can be readily applied and identifies clinically distinctive types of NHL.

World Health Organization Classification

In 2001, the World Health Organization (WHO) updated the classification of hematopoietic and lymphoid neoplasms. The 2001 WHO classification applied the principles of REAL classification and represented the first international consensus on classification of hematologic malignancies. The REAL/WHO classification of NHL includes many entities not recognized by the IWF. After consideration of cell of origin (B, T, or NK), the classification subdivides lymphomas into those derived from precursor lymphocytes versus those derived from mature lymphocytes. The classification is further refined based on immunophenotype, genetic, and clinical features. These considerations have aided in defining active treatment for specific subtypes of lymphoma.

In 2008, the International T-cell lymphoma Project evaluated the WHO classification of T-cell lymphoma in a cohort of 1,314 cases of PTCL and natural killer/T-cell lymphomas (NKTL). The diagnosis of PTCL or NKTL was confirmed in 1,153 cases (88%). The most common subtypes were PTCL-not otherwise specified (NOS; 25.9%), angioimmunoblastic lymphoma (18.5%), NKTL (10.4%), adult T-cell leukemia/lymphoma (ATLL; 9.6%), anaplastic large cell lymphoma (ALCL), ALK-positive (6.6%) and ALCL, ALK-negative (5.5%). The findings of this study validated the utility of the WHO classification for defining subtypes of T-cell lymphomas.
The WHO classification was updated again in September 2008 to add new diseases and subtypes that have been recognized in the past decade, and to better define some of the heterogeneous and ambiguous categories based on the recent advances. Genetic features, detected by cytogenetics or fluorescence in-situ hybridization (FISH) are increasingly important in defining specific NHL subtypes. In addition, detection of viruses, particularly Epstein-Barr virus, HHV8 and HTLV1, is often necessary to establish a specific diagnosis.

2008 WHO Classification of Mature B-cell Lymphomas

Follicular Lymphoma

In FL, pathological grading according to the number of centroblasts is considered to be a clinical predictor of outcome. In the 2001 WHO classification, three grades were recommended: FL1, FL2, and FL3; FL3 could be optionally stratified into 3A (centrocytes still present) or 3B (sheets of centroblasts). However, clinical outcomes for patients with FL1 and FL2 do not differ and this classification was deemed unreliable. Therefore, in the updated 2008 WHO classification, these grades are grouped under a single grade (FL1-2). Hans et al reported that there was no difference in survival outcomes between patients with Grade 3A and 3B FL, whereas patients with FL3 with more than 50% diffuse component have an inferior survival similar to the survival of those with DLBCL. FL3B with cytogenetic abnormalities of BCL6 (at 3q27) are thought to be genetically more akin to germinal center type DLBCL than FL1-3A, and is associated with a more aggressive clinical course. Patients with FL3B with BCL2 translocation appear to have a clinical course similar to patients with FL1-3A. Since FL3B is rare, the clinical behavior of FL3 in most studies is based mainly on FL3A cases. The 2008 WHO classification mandates stratifying FL3 into either 3A or 3B. FL is thus still divided into three grades (FL1-2, FL3A and FL3B) based on the number of centroblasts. Any diffuse areas in FL should be given a separate diagnosis of DLBCL, if it meets the criteria for FL3A or 3B.

Pediatric-type follicular lymphoma: Pediatric-type FL is considered a rare variant of FL in the 2008 WHO classification and is generally characterized by lack of BCL2 rearrangement and t(14,18), which constitutes the genetic hallmark of conventional FL seen in adults. Pediatric-type FL has a better prognosis than adult FL and is often cured with minimal therapy.

Primary intestinal follicular lymphoma: FL of the gastrointestinal tract is a recently described entity, which is common in the small intestine with the vast majority of cases occurring in the duodenum. The morphology, immunophenotype, and genetic features are similar to those of nodal FL. However, most patients have clinically indolent and localized disease. Survival appears to be excellent even without treatment.

Other extranodal follicular lymphoma: In many of the other extranodal sites, the morphology, immunophenotype, and genetic features are similar to those of nodal FL. Patients usually have localized disease and systemic relapses are rare.

Follicular Lymphoma “in situ”: FLIS is characterized by the preservation of the lymph node architecture, with the incidental finding of focal strongly positive staining for BCL2 (restricted to germinal centers) and CD10 in the involved follicles, and the detection of t(14;18) by FISH. FLIS has been reported in patients with prior FL or concurrent FL (at other sites), as well as in individuals with no known history of FL. The occurrence of FLIS in the general population appears to be rare.
Primary Cutaneous Follicle Center Lymphoma (PC-FCL)

This is a new category in the 2008 classification and is defined as a tumor of neoplastic follicle center cells, including centrocytes and variable numbers of centroblasts, with a follicular, follicular and diffuse or a diffuse growth pattern. PC-FCL is the most common B-cell lymphoma of the skin and it is classified as a distinct entity in the EORTC classification of cutaneous lymphomas. Gene expression profiling studies have also provided evidence in support of this classification. PC-FCL presents as a solitary or localized skin lesion on the scalp, forehead or the trunk. It is characterized by an indolent course and rarely disseminates to extracutaneous sites. PC-FCL is consistently BCL6-positive, may be CD10-positive in cases with a follicular growth pattern. BCL2 is often either negative or dim (predominantly seen in cases with a follicular growth pattern). PC-FCL has an excellent prognosis with a 5-year survival rate of 95%. PC-FCL must be distinguished from primary cutaneous DLBCL, leg type, which is not always possible histologically, and can be identified by expression of IRF4/MUM1, is strongly BCL2+ and has a more unfavorable prognosis.

Diffuse Large B-cell Lymphomas

Some of the new categories of DLBCL are defined by extranodal primary sites and the association with viruses such as EBV or HHV8. Two borderline categories have also been included to incorporate cases in which it is not possible to distinguish between adult Burkitt lymphoma (BL) and DLBCL, and primary mediastinal large B-cell lymphoma (PMBL) and nodular sclerosis classical Hodgkin lymphoma (NSCHL). The ALK-positive DLBCL, plasmablastic lymphoma and primary effusion lymphoma are considered as distinct entities. The 2008 classification also has new category of large B-cell lymphoma arising in HHV8-associated multicentric Castleman’s disease.

DLBCL, Not Otherwise Specified (NOS)

The 2008 classification has included DLBCL, NOS as a new category to include germinal center B-cell (GCB) subtype, activated B-cell (ABC) subtype as well as other DLBCL cases that do not belong to any of the four specific subtypes (T-cell/histiocyte rich large B-cell lymphoma, primary CNS DLBCL, primary cutaneous DLBCL (“leg type”) or EBV+ DLBCL of the elderly).

Gene expression profiling (GEP) has been used to identify distinct subtypes of DLBCL: GCB) subtype, ABC subtype, PMBL, and type 3 which includes cases that cannot be classified as GCB, ABC, or PMBL subtypes. GEP is not yet recommended for routine clinical use. Immunostaining algorithms have been developed to differentiate between GCB and ABC subtypes using a combination of CD10, BCL6, IRF4/MUM1, GCET1, FOXP1, and LMO2. GCB subtype is associated with an improved outcome compared to non-GCB subtype. However, at the present time, the upfront standard of care remains the same for both GCB and non-GCB subtypes.

B-cell Lymphoma, Intermediate between BL and DLBCL

BL is characterized by t(8;14), which results in the juxtaposition of MYC gene from chromosome 8 with the immunoglobulin heavy chain variable (IGHV) region on chromosome14 and variant translocations involving MYC and the immunoglobulin light chain genes. Nevertheless, MYC translocations also occur in DLBCL. GEP studies have confirmed that the distinction between BL and DLBCL is not reliably reproducible with the use of the current criteria of morphology, immunophenotype, and genetic abnormalities. Mature aggressive B-cell lymphomas without a molecular BL signatures (non-mBL) with MYC rearrangements as well as those with both t(8;14) and t(14;18) translocations are associated with a poor prognosis.
This provisional category replaces the “Atypical Burkitt Lymphoma” that was included in the 2001 WHO classification. The new category includes lymphomas with features of both DLBCL and BL, but or biological and clinical reasons should not be diagnosed as DLBCL or BL. Lymphomas in this provisional category include those that are morphologically intermediate between BL and DLBCL with immunophenotype suggestive of BL (CD10-positive, BCL6-positive, BCL2-negative and IRF4/MUM1-negative or weakly positive), lymphomas that are morphologically similar to BL but are strongly BCL2-positive and those with MYC rearrangement in addition to BCL2 and/or BCL6 rearrangements by FISH or standard cytogenetics (“double hit”) and complex karyotypes.

B-cell Lymphoma Intermediate between PMBL and NSCHL

PMBL has been recognized as a subtype of DLBCL based on its distinctive clinical and morphological features. NSCHL is the most common form of HL. Both tumors occur in the mediastinum and affect adolescents and young adults. GEP studies strongly support a relationship between PMBL and CHL. About a third of the genes that were more highly expressed in PMBL were also characteristically expressed in CHL cells. Traverse-Glehen, et al., reported borderline cases with biologic and morphologic features of both CHL and B-cell NHL, known as “mediastinal gray zone lymphomas.”

This provisional category includes lymphomas with overlapping features between CHL and DLBCL, especially PBML. Those cases that morphologically resemble NSCHL have a strong expression of CD20 and other B-cell associated markers. Those cases that resemble PBML may have dim or no expression of CD20, strong expression of CD30 and CD15. These lymphomas have a more aggressive course and poorer outcome than either CHL or PBML.

Primary Cutaneous DLBCL, Leg Type (PC-DLBCL)

PC-DLBCL, leg type, is an unusual form of DLBCL composed of large transformed B cells most commonly arising on the leg (85-90%) although it can arise at other sites (10-15%). These tumors arise from post-germinal center B-cell with expression of CD20, IRF4/MUM1, FOXP1, and BCL2; many cases express BCL6 and lack expression of CD10. These tumors can disseminate to non-cutaneous sites, including the CNS. Studies have reported the development of extracutaneous relapse in 17-47% of patients with PC-DLBCL. In a study in patients with PC-DLBCL (N=60), CNS was the most common site of visceral progression, occurring in 27% of patients with extracutaneous relapse (or in 12% of all patients on this study). The high frequency of extracutaneous relapse in PC-DLBCL results in a poorer prognosis than the other cutaneous B-cell lymphomas, especially when the presentation involves multiple cutaneous lesions.

Role of PET Scans

Response Assessment

The International Working Group (IWG) published the guidelines for response criteria for lymphoma in 1999. These response criteria are based on the reduction in the size of the enlarged lymph node as measured by CT scan and the extent of bone marrow involvement that is determined by bone marrow aspirate and biopsy. These guidelines were revised in 2007 by the International Harmonization Project to incorporate IHC, flow cytometry and 18-flourodeoxyglucose (FDG)-positron emission tomography (PET) scans in the definition of response for lymphoma. In the revised guidelines, the response category of complete response uncertain (CRu) was essentially eliminated because residual masses were defined as a partial response (PR) or a complete response (CR) based on the result of a PET scan.
The response is categorized as CR, PR, stable disease (SD) and relapsed disease or progressive disease (PD).

In 2014, revised response criteria, known as the Lugano criteria, were introduced for staging and response assessment using PET-CT scans.\(^\text{51,52}\) PET-CT is recommended for initial staging of all FDG-avid lymphomas. The use of 5-point scale (5-PS) is recommended for the interpretation and reporting of PET-CT scans. The 5-PS is based on the visual assessment of FDG uptake in the involved sites relative to that of the mediastinum and the liver.\(^\text{53-55}\) A score of 1 denotes no abnormal FDG-avidity, while a score of 2 represents uptake less than the mediastinum. A score of 3 denotes uptake greater than the mediastinum but less than the liver, while scores of 4 and 5 denote uptake greater than the liver, and greater than the liver with new sites of disease, respectively. Different clinical trials have considered scores of either 1-2 or 1-3 to be PET-negative, while scores of 4-5 are universally considered PET-positive. A score of 4 on an interim or end of treatment restaging scan may be consistent with a partial response if the FDG-avidity has declined from initial staging, while a score of 5 denotes progressive disease.

However, the application of PET-CT to response assessment is limited to histologies where there is reliable FDG uptake in active tumor and the revised response criteria have thus far only been validated for DLBCL and Hodgkin lymphoma. The application of the revised response criteria to other histologies requires validation and the original IWG guidelines should be used. Of note, the Lugano response criteria may not be applicable for several of the tumor subtypes included in the NCCN Guidelines. Tumor specific response criteria are included in the guidelines for chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), hairy cell leukemia (HCL), mycosis fungoides/Sezary syndrome (MF/SS), adult T-cell leukemia/lymphoma (ATLL), and T-cell-prolymphocytic leukemia (T-PLL).

Staging

PET-CT scans are now employed for initial staging, restaging and end of treatment response assessment in the majority of patients with NHL.\(^\text{56}\) In a meta-analysis study, PET showed a high positivity and specificity when used for the staging and restaging of patients with lymphoma.\(^\text{57}\) PET is nearly universally positive at diagnosis in Hodgkin lymphoma, DLBCL, and follicular lymphoma,\(^\text{58}\) about 90% in T-cell lymphoma\(^\text{59}\) and nodal MZL but less sensitive for extra-nodal MZL.\(^\text{60}\) However, a number of benign conditions including sarcoid, infection, and inflammation can result in false-positive PET scans, complicating the interpretation. Lesions smaller than 1 cm are not reliably visualized with PET scans. Although PET scans may detect additional disease sites at diagnosis, the clinical stage is modified only in 15-20% of patients and a change in treatment in only 8% of patients. PET scans are now virtually always performed as combined PET-CT scans.

PET-CT has distinct advantages in both staging and restaging compared to full-dose diagnostic CT or PET alone.\(^\text{61,62}\) In a retrospective study, PET-CT performed with low-dose non-enhanced CT was found to be more sensitive and specific than the routine contrast-enhanced CT in the evaluation of lymph node and organ involvement in patients with Hodgkin disease or high-grade NHL.\(^\text{62}\) Preliminary results of another recent prospective study (47 patients; patients who had undergone prior diagnostic CT were excluded) showed a good correlation between low-dose unenhanced PET-CT and full-dose enhanced PET-CT in the evaluation of lymph nodes and extranodal disease in lymphomas.\(^\text{61}\) PET-CT is particularly important for staging before consideration of RT and baseline PET-CT will aid in...
the interpretation of post-treatment response evaluation based on the 5-PS as described above.52

PET-CT is recommended for initial staging of FDG-avid lymphomas. PET should be done with contrast-enhanced diagnostic CT. Staging imaging with CT is recommended for lymphomas that are minimally FDG-avid (CLL/SLL, marginal zone lymphomas, HCL, cutaneous B-cell lymphomas, MF/SS, CD30+ cutaneous lymphomas and T-cell large granular lymphocytic leukemia), except in selected circumstances. FDG-avid lymphomas should have response assessed by PET-CT using the 5-PS. False-positive PET scans may be observed related to infectious or inflammatory conditions. Biopsy of affected sites remains the gold standard for confirming new or persistent disease at end of therapy.

Principles of Radiation Therapy

Radiation therapy (RT) can be delivered with photons, electrons or protons, depending upon clinical circumstances. Advanced RT techniques emphasize tightly conformal doses and steep gradients next to normal tissues. Therefore, target definition and delineation and treatment delivery verification require careful monitoring to avoid the risk of missing geographic location of the tumor and subsequent decrease in tumor control. Image guidance may be required to facilitate target definition. Preliminary results from single-institution studies have shown that significant dose reduction to organs at risk (OAR; eg, lungs, heart, breasts, kidneys, spinal cord, esophagus, carotid artery, bone marrow, stomach, muscle, soft tissue and salivary glands) can be achieved with advanced RT planning and delivery techniques such as 4D-CT simulation, intensity-modulated RT (IMRT), image-guided RT, respiratory gating or deep inspiration breath hold.63-66 These techniques offer significant and clinically relevant advantages in specific instances to spare OAR and decrease the risk for normal tissue damage and late effects without compromising the primary goal of local tumor control.67-70

In mediastinal lymphoma, the use of 4D-CT simulation and the adoption of strategies to deal with respiratory motion such as inspiration breath-hold techniques, and image guided RT during treatment delivery is also important.

Randomized prospective studies to test these concepts are unlikely to be done since these techniques are designed to decrease late effects, which usually develop ≥ 10 years after completion of treatment. Therefore, the guidelines recommend that RT delivery techniques that are found to best reduce the doses to the OAR in a clinically meaningful manner without compromising target coverage should be considered.

Involved-site RT (ISRT) is intended to limit radiation exposure to adjacent uninvolved organs (such as lungs, bone, muscle, or kidney) when lymphadenopathy regresses following chemotherapy, thus minimizing the potential long term complications. Extended-field RT (EFRT) and involved-field RT (IFRT) techniques have now been replaced by ISRT, in an effort to restrict the size of the RT fields to smaller volumes.71,72 ISRT targets the initially involved nodal and extra-nodal sites detectable at presentation.71,72 Larger RT fields should be considered for limited stage indolent NHL, often treated with RT alone.71

Treatment planning for ISRT requires the use of CT-based simulation. The incorporation of additional imaging techniques such as PET and MRI often enhances the treatment planning. The OAR should be outlined for optimizing treatment plan decisions. The treatment plan is designed using conventional, 3D conformal, or IMRT techniques using clinical treatment planning considerations of coverage and dose reductions for OAR.71
The principles of ISRT are similar for both nodal and extranodal disease. The gross tumor volume (GTV) defined by radiological imaging prior to biopsy, chemotherapy or surgery provides the basis for determining the clinical target volume (CTV). Possible movement of the target by respiration as determined by 4D-CT or fluoroscopy should also influence the final CTV. The presence of suspected subclinical disease and uncertainties in original imaging accuracy or localization may lead to the expansion of the CTV. The planning treatment volume (PTV) is an additional expansion of the CTV that accounts only for setup variations.

In the case of extranodal disease, particularly for indolent lymphoma, in most cases, the whole organ comprises the CTV (eg, stomach, salivary gland, and thyroid). For other organs, including orbit, breast, lung, bone, localized skin, and in some cases when RT is consolidation after chemotherapy, partial organ RT may be appropriate. No radiation is required for uninvolved lymph nodes for most NHL subtypes.

The general dose guidelines for individual subtypes of NHL are outlines in the “Principles of RT” section of the guidelines.

Diagnosis

In all cases of NHL, the most important first step is an accurate pathologic diagnosis. The basic pathological evaluation is the same in each Guidelines (by tumor subtype), although some further evaluation may be useful in certain circumstances to clarify a particular diagnosis; these are outlined in the pathological evaluation of the individual Guidelines.

An incisional or excisional lymph node biopsy is recommended to establish the diagnosis of NHL. Core needle biopsy is discouraged unless the clinical situation dictates that this is the only safe means of obtaining diagnostic tissue. Fine needle aspiration (FNA) biopsy is widely used in the diagnosis of malignant neoplasms, but its role in the diagnosis of lymphoma is still controversial. Since the revised REAL/WHO classification is based on both morphology and immunophenotyping, FNA alone is not acceptable as a reliable diagnostic tool for NHL. However, its use in combination with ancillary techniques may provide precise diagnosis thereby obviating the need for a more invasive biopsy in highly selected circumstances. Recent studies have shown that the diagnostic accuracy of FNA improves significantly when it is used in combination with IHC and flow cytometry.

In the NCCN Guidelines, FNA alone is not suitable for an initial diagnosis of NHL, though it may be sufficient to establish relapse. However, in certain circumstances, when a lymph node is not easily accessible, a combination of core biopsy and FNA in conjunction with appropriate ancillary techniques [PCR for IGHV and/or T-cell receptor (TCR) gene rearrangements; FISH for major translocations; immunophenotypic analysis] may be sufficient for diagnosis. This is particularly true for the diagnosis of CLL. In other entities presenting in leukemic phase, such as FL or MCL, a biopsy is still preferred to clarify histological subtype.

Immunophenotypic analysis is essential for the differentiation of various subtypes of NHL to establish the proper diagnosis. It can be performed by flow cytometry and/or IHC; the choice depends on the antigens as well as the expertise and resources available to the hematopathologist. In some cases flow cytometry and IHC are complementary diagnostic tools. Cytogenetic or molecular genetic analysis may be necessary under certain circumstances to identify the specific chromosomal translocations that are characteristic of some NHL subtypes or to establish clonality.
After the publication of the 2008 WHO Classification, the NHL Guidelines panel developed a series of algorithms for the use of immunophenotyping in the diagnosis of mature lymphoid neoplasms. These algorithms were developed to provide guidance for surgical pathologists as well as an aid to the clinician in the interpretation of pathology reports and they should be used in conjunction with clinical and pathological correlation. See Immunophenotyping/Genetic Testing in the guidelines.

Workup

Essential workup procedures include a complete physical exam with particular attention to node bearing areas and the size of liver and spleen, symptoms present, performance status, laboratory studies including CBC, serum lactate dehydrogenase (LDH), hepatitis B virus testing (see below), comprehensive metabolic panel, and CT chest/abdominal/pelvic with oral and intravenous contrast (unless co-existent renal insufficiency). MUGA scan or echocardiograms are recommended when anthracyclines and anthracenedione containing regimens are used. Due the risk of hepatitis B reactivation, the panel has included hepatitis B testing (hepatitis B surface antigen and hepatitis B core antibody) as part of essential workup prior to initiation of treatment in all patients who will receive anti CD20 monoclonal antibody-based regimens. Furthermore, hepatitis B reactivation has been reported with chemotherapy alone and testing should be considered in anyone with a risk factor (e.g. blood transfusion, IV drug abuse) or if from a region with a non-negligible prevalence of hepatitis B infection (see “Hepatitis B Reactivation” in the Supportive Care section below). Hepatitis C testing is needed in high-risk patients and patients with splenic marginal zone lymphoma.

Optional procedures (depending on specific lymphoma type) include beta-2-microglobulin, CT or PET-CT scans, endoscopic ultrasound (gastric MALT lymphoma), head CT or brain MRI and lumbar puncture to analyze cerebrospinal fluid (MCL and DLBCL). Discussion of fertility issues and sperm banking should be addressed in the appropriate circumstances.

Bone marrow biopsy with or without aspirate is essential in all cases where treatment is considered; however, there are circumstances where it may be deferred. Bone marrow biopsy is usually included in the workup for all patients with NHL with the exception of SLL/CLL when there is a clonal lymphocytosis identified by flow cytometry. Bone marrow involvement occurs in 39% of low-grade, 36% of intermediate grade and 18% of high-grade lymphomas. Bone marrow involvement was associated with significantly shorter survivals in patients with intermediate or high-grade lymphomas.

In a retrospective analysis, the incidence of bone marrow involvement and the parameters predicting bone marrow involvement were analyzed in 192 patients with stage I and II in DLBCL. Overall incidence of BM involvement was 3.6%. The authors concluded that bone marrow biopsy may be safely omitted in selected patients with early stage DLBCL. In cutaneous B-cell lymphomas, bone marrow biopsy is essential for PC-DLBCL, leg type, since this is an aggressive lymphoma that will probably require systemic treatment, whereas the role of bone marrow biopsy in the PC-FCL and PC-MZL subtypes is less clear. Recent studies have indicated that bone marrow biopsy is an essential component of staging in patients with PC-FCL first presenting in the skin, whereas it appears to have limited value in patients with MZL presenting in the skin, and may be considered only in selected cases.
In the NCCN Guidelines, bone marrow biopsy with or without aspirate is included as part of essential workup for all lymphomas. However, in patients with low bulk indolent disease with radiographic clinical stage III disease, an initial staging bone marrow evaluation can be deferred if observation is recommended as it will not change the clinical recommendations. However, in the evaluation of potentially early stage indolent lymphoma (stage I or II), bone marrow biopsy is essential; some panel members advocate bilateral core biopsies in this situation. Bilateral cores are recommended if radioimmunotherapy is considered.

Supportive Care
Supportive care remains an important component of managing patients with NHL, particularly during active therapy. Supportive care measures for NHL may include (but are not limited to) management of infectious complications, management of tumor lysis syndrome, and use of myeloid growth factors or blood product transfusions. These measures may help to maximize the benefit of NHL therapy for patients by enhancing tolerability, reducing treatment-related toxicities, and ensuring timely delivery of planned treatment courses. Patients with hematologic malignancies are at increased risk for infectious complications due to profound immunosuppression stemming from myelosuppressive therapy and/or the underlying malignancy. For example, reactivation of latent viruses may occur in the setting of significant immunosuppression in patients with NHL.

Viral Reactivation and Infections
Hepatitis B Virus Reactivation
Hepatitis B virus (HBV) reactivation has been reported in patients treated with chemotherapy with or without immunotherapy agents. HBV carriers with lymphoid malignancies have a high risk of HBV reactivation and disease, especially those treated with anti-CD20 monoclonal antibodies (e.g., rituximab, ofatumumab). Cases of liver failure and death associated with HBV reactivation have occurred in patients receiving rituximab-containing regimens. Testing for hepatitis B surface antigen (HBsAg) and hepatitis B core antibody (HBcAb) can determine the HBV status of an individual. Because of the widespread use of the hepatitis B vaccine, hepatitis B surface antibody (HBsAb) positivity is of limited value; however, in rare cases, HBsAb levels can help to guide therapy. Patients with malignancies who are positive for either HBsAg or HBcAb are at risk for HBV reactivation with cytotoxic chemotherapy; approximately 20% to 50% of patients with HBsAg positivity and 3% to 45% with HBcAb positivity develop HBV reactivation. False-negative HBsAg results may occur in chronic liver disease; therefore, patients with a history of hepatitis in need of chemotherapy should be assessed by viral load measurement. HBsAb positivity is generally equated with protective immunity, although reactivated HBV disease may occur in the setting of significant immunosuppression in HBcAb-positive individuals. In patients with B-cell lymphoid malignancies treated with rituximab-containing regimens, HBV reactivation was observed in patients with HBcAb positivity (with or without HBsAb positivity), even among those who were HBsAg negative prior to initiation of treatment. A recent meta-analysis and evaluation of the FDA safety reports concerning HBV reactivation in patients with lymphoproliferative disorders reported that HBcAb positivity was correlated with increased incidence of rituximab-associated HBV reactivation. Vaccination against HBV should be strongly considered in HBV-naïve patients (i.e., negative for HBsAg, HBsAb, and HBcAb).
Recommended strategies for the management of HBV reactivation in patients with hematologic malignancies undergoing immunosuppressive therapy include upfront antiviral prophylaxis or pre-emptive therapy. Prophylactic approaches involve treating patients who are HBsAg-positive or HBcAb-positive with prophylactic antiviral therapy, regardless of viral load or presence of clinical manifestations of HBV reactivation. The alternative strategy of pre-emptive therapy involves close surveillance with a highly sensitive quantitative assay for HBV, combined with antiviral therapy upon a rising HBV DNA load. Antiviral prophylaxis with lamivudine has been shown to reduce the risks for HBV reactivation in HBsAg-positive patients with hematologic malignancies treated with immunosuppressive cytotoxic agents. A small randomized study in HBsAg-positive patients with lymphoma (N=30) showed that antiviral prophylaxis with lamivudine was superior to deferred pre-emptive therapy (i.e., antivirals given at the time of serological evidence of HBV reactivation based on viral DNA in serum samples). HBV reactivation occurred in 53% of patients in the deferred therapy arm compared with none in the prophylaxis arm. In a meta-analysis of clinical trials evaluating the benefit of lamivudine prophylaxis in HBsAg-positive lymphoma patients treated with immunosuppressive regimens, prophylaxis resulted in significant reductions in HBV reactivation (risk ratio=0.21; 95% CI, 0.13–0.35) and a trend for reduced HBV-related deaths (risk ratio=0.68; 95% CI, 0.19–2.49) compared with no prophylaxis.

Recent studies have shown entecavir to be more effective than lamivudine in preventing rituximab-associated HBV reactivation. The results of a randomized controlled trial showed that entecavir prophylaxis (before initiation of chemotherapy to 3 months after completion of chemotherapy) was more effective in preventing HBV-reactivation than the control (initiation of entecavir therapy at the time of HBV reactivation and HBsAg reverse seroconversion after chemotherapy). The cumulative HBV reactivation rates at months 6, 12, and 18 after chemotherapy were 8%, 11.2%, and 25.9%, respectively, in the control group, and 0%, 0%, and 4.3% in the entecavir prophylaxis (P = .019). In another prospective study that compared the efficacy of antiviral prophylaxis with entecavir (n= 61) and lamivudine (n= 60) in HBsAg-positive patients with newly diagnosed DLBCL treated with R-CHOP chemoimmunotherapy, entecavir was associated with significantly lower rates of HBV reactivation (6.6% vs 30.0%, P = .001), HBV-related hepatitis (0% vs 13.3%, P = .003) and disruption of chemotherapy (1.6% vs 18.3%, P = .002). Although prophylaxis with lamivudine has been evaluated in the setting of immunosuppressive anti-tumor therapy (as mentioned above), the optimal antiviral strategy remains unclear. Concerns over the development of resistance to lamivudine exist. Adefovir combined with lamivudine has been evaluated in patients with lamivudine-resistant HBV infections. Tenofovir has demonstrated superior antiviral efficacy compared with adefovir in randomized double-blind phase III studies in patients with chronic HBV infection, and may be the preferred agent in this setting, however, limited data are available regarding its use in patients with cancer. Entecavir and telbivudine have also been evaluated in randomized open-label studies with adefovir as the comparator in patients with chronic HBV infection, and both agents have shown improved antiviral activity compared with adefovir.

The panel recommends HBsAg and HBcAb testing for all patients planned for treatment with anti-CD20 monoclonal antibody-containing regimens. In individuals who test positive for HBsAg and/or HBcAb, baseline quantitative PCR for HBV DNA should be obtained to determine viral load. However, a negative baseline PCR does not preclude the possibility of reactivation. Patients receiving intravenous...
immunoglobulin (IVIG) may be HBcAb positive as a consequence of IVIG therapy, although HBV viral load monitoring is recommended. Prophylactic antiviral therapy with entecavir is recommended for patients who are HBsAg positive and undergoing anti-lymphoma therapy. Lamivudine prophylaxis should be avoided due to the risks for the development of resistance. For patients who are HBsAg negative but HBcAb positive, antiviral prophylaxis with entecavir is also the preferred approach; however, if these patients concurrently have high levels of HBsAb, they may be monitored with serial measurements of HBV viral load and treated with pre-emptive antivirals upon increasing viral load. During the treatment period, viral load should be monitored monthly with PCR and then every 3 months after completion of treatment. If viral load is consistently undetectable, prophylaxis with antivirals should be continued. If viral load fails to drop or a previously undetectable PCR becomes positive, consultation with a hepatologist and discontinuation of anti-CD20 antibody therapy is recommended.

As mentioned above, several antiviral agents are available for prophylactic measures. The optimal choice will be driven by institutional standards or recommendation from hepatology or infectious disease consultant. The appropriate duration of prophylaxis remains undefined, but the panel recommended that surveillance and antiviral prophylaxis should be continued for up to 12 months after the completion of oncologic treatment.

Hepatitis C Virus-associated B-cell NHL

Case-control studies have demonstrated a strong association between seropositivity for hepatitis C virus (HCV) and development of NHL, particularly for B-cell lymphomas. In large population-based or multicenter case-control studies, prevalence of HCV seropositivity was consistently increased among patients with B-cell histologies, including DLBCL and marginal zone lymphomas. A retrospective study in patients with HCV infection (N=3209) showed that the cumulative incidence of developing malignant lymphomas was significantly higher among patients with persistent HCV infection compared with those who had sustained virologic response (SVR) to interferon-containing therapy (15-year incidence rate 2.6% vs. 0%; P=0.016). Based on multivariate analysis, persistent HCV infection remained a significant independent factor associated with development of malignant lymphomas. This study suggested that achievement of SVR with interferon-based therapy may reduce the incidence of malignant lymphoma in patients with HCV infection.

Several published reports suggested that treatment with antivirals (typically interferon with or without ribavirin) led to regression of NHLs in HCV-positive patients, which provide additional evidence for the involvement of HCV infection in the pathogenesis of lymphoproliferative diseases. In a retrospective study in patients with NHL (N=343; indolent and aggressive histologies) who achieved a CR after chemotherapy, the subgroup of HCV-positive patients treated with antivirals (interferon and ribavirin; n=25) had significantly longer disease-free survival compared with HCV-positive patients who did not receive antiviral therapy (n=44); the probability of relapse-free survival at 5-year follow up was 76% and 55%, respectively. In addition, none of the patients with a SVR to antivirals (n=0 of 8) relapsed compared with 29% who did not respond to antivirals (n=5 of 17).

In a multicenter retrospective study from a large series of HCV-positive patients with indolent NHL, antiviral therapy (interferon or pegylated interferon, with or without ribavirin), resulted in HCV-RNA clearance was achieved in 80% of patients who received first-line antivirals (n=100) and in 67% of those who received antivirals as second-line therapy after failure of initial treatment (n=34). Patients in this analysis did not require immediate treatment for their lymphoma. The ORR for
patients treated with antiviral in the first-line setting was 77% (44% CR and 33% PR) and the ORR for patients treated with antiviral in the second-line setting was 85% (56% CR and 29% PR). In the group of patients who received antivirals in first line, hematologic response was significantly associated with achievement of HCV-RNA clearance. Thus, in HCV-positive patients with indolent NHL not requiring immediate anti-tumor therapy with chemoimmunotherapy regimens, initial treatment with interferon (with or without ribavirin) appeared to induce lymphoma regression in a high proportion of patients. In HCV-positive patients with NHL who achieve a remission with anti-tumor therapy, subsequent treatment with antivirals may be associated with lower risk of disease relapse.

The optimal management of HCV-positive patients with NHL remains to be defined. Patients with indolent NHL and HCV seropositivity may benefit from antiviral treatment as initial therapy, as demonstrated in several reports. In patients with aggressive NHL, an earlier analysis of pooled data from GELA clinical studies (prior to the rituximab era) suggested that HCV seropositivity in patients with DLBCL was associated with significantly decreased survival outcomes, due, in part, to severe hepatotoxicity among those with HCV infection. Subsequent studies in the rituximab era showed that HCV seropositivity was not predictive of outcomes in terms of PFS or OS in patients with DLBCL. However, the incidence of hepatotoxicity with chemoimmunotherapy was higher among HCV-positive patients, confirming the observation made from the GELA studies.

The treatment of chronic HCV infection has improved with the advent of newer antiviral agents, especially those that target carriers of HCV genotype 1. Direct acting antiviral agents (DAA) administered in combination with standard antivirals (pegylated interferon and ribavirin) have shown significantly higher rates of SVR compared with standard therapy alone in chronic carriers of HCV genotype 1. Telaprevir and boceprevir are DAAs that were recently approved by the FDA for the treatment (in combination with pegylated interferon and ribavirin) of patients with HCV genotype 1 infection. The updated guidelines for the management of HCV infection from the American Association for the Study of Liver Diseases (AASLD) recommended that DAAs be incorporated into standard antiviral therapy for patients infected with HCV genotype 1.

The panel recommends initial antiviral therapy in asymptomatic patients with HCV-positive low-grade B-cell NHL. For those with HCV genotype 1, triple antiviral therapy with inclusion of DAAs should be considered as per AASLD guidelines. Patients with HCV-positive aggressive B-cell NHL should initially be treated with appropriate chemoimmunotherapy regimens according to the NCCN Guidelines for NHL. Liver function and serum HCV RNA levels should be closely monitored during and after chemoimmunotherapy for development of hepatotoxicity. Antiviral therapy should then be considered in patients who achieve a CR after completion of chemoimmunotherapy.

Cytomegalovirus Reactivation

Cytomegalovirus (CMV) reactivation may occur among patients with lymphoproliferative malignancies receiving alemtuzumab therapy, and occurs most frequently between 3 to 6 weeks after initiation of therapy when T-cell counts reach a nadir. CMV reactivation is a well-documented infectious complication in patients receiving treatment with alemtuzumab, occurring in up to 25% of treated patients. Current management practices for prevention of CMV reactivation include the use of prophylactic ganciclovir (oral or IV) if CMV viremia is present prior to alemtuzumab therapy, or pre-emptive use of these drugs when the viral load is found to be increasing during therapy.
Patients with hematologic malignancies treated with alemtuzumab-containing regimens should be closely monitored and managed for potential development of CMV reactivation. To this end, periodic monitoring for the presence of CMV antigens using quantitative polymerase chain reaction (PCR) assays is an effective management approach. The panel recommends routine surveillance for CMV viremia (every 2–3 weeks) during the treatment course with alemtuzumab and for 2 months following completion of alemtuzumab treatment.

Progressive Multifocal Leukoencephalopathy

Progressive multifocal leukoencephalopathy (PML) is a rare but serious and usually fatal CNS infection caused by reactivation of the latent JC polyoma virus. Cases of PML generally occur in severely immunocompromised individuals, as in the case of patients with AIDS. Patients with hematologic malignancies who have profound immunosuppression (due to the underlying disease and/or immunosuppressive therapies) are also at risk of developing PML. In a report of 57 cases from the Research on Adverse Drug Events and Reports project, 52 patients with lymphoproliferative disorders developed PML after treatment with rituximab and other treatments which included hematopoietic stem cell transplantation or chemotherapy with purine analogs or alkylating agents. Median time from last rituximab dose to PML diagnosis was 5.5 months. Median time to death after PML diagnosis was 2 months. The case fatality rate was 90%. The use of rituximab may be associated with an increased risk of PML in immunocompromised patients with lymphoproliferative malignancies. PML has been reported with rituximab treatment (usually in combination with chemotherapy regimens) in patients with CLL/SLL or other types of NHL. Patients with low CD4+ T-cells prior to or during anti-tumor treatment with rituximab-containing regimens may be particularly susceptible to PML. Patients with NHL receiving treatment with another anti-CD20 monoclonal antibody ofatumumab, or the anti-CD30 antibody-drug conjugate brentuximab vedotin, may also be at potential risk for PML.

Development of PML is clinically suspected based on neurological signs and symptoms that may include confusion, motor weakness or poor motor coordination, visual changes, and/or speech changes. PML is usually diagnosed with PCR of cerebrospinal fluid (CSF) or in some cases, by analysis of brain biopsy material. There is no effective treatment for PML. Patients should be carefully monitored for the development of any neurological symptoms. There is currently no consensus on pretreatment evaluations that can be undertaken to predict for the subsequent development of PML.

Tumor Lysis Syndrome

Tumor lysis syndrome (TLS) is a potentially serious complication of anticancer therapy characterized by metabolic and electrolyte abnormalities caused by the abrupt release of intracellular contents into the peripheral blood resulting from cellular disintegration induced by anticancer therapy. It is usually observed within 12 to 72 hours after start of chemotherapy. Untreated TLS can induce profound metabolic changes resulting in cardiac arrhythmias, seizures, loss of muscle control, acute renal failure, and even death.

Cairo and Bishop have classified TLS into laboratory TLS and clinical TLS. Laboratory TLS is defined as a 25% increase in the levels of serum uric acid, potassium, or phosphorus or a 25% decrease in calcium levels. Clinical TLS refers to laboratory TLS with clinical toxicity that requires intervention. Clinical complications may include renal insufficiency, cardiac arrhythmia, or seizures. The four primary electrolyte abnormalities of TLS are hyperkalemia, hyperuricemia, hyperphosphatemia, and hypocalcemia. Symptoms associated with
TLS may include nausea and vomiting, diarrhea, seizures, shortness of breath, or cardiac arrhythmias. The risk factors for TLS include bone marrow involvement, bulky tumors that are chemosensitive, rapidly proliferative or aggressive hematologic malignancies, an elevated leukocyte count or pretreatment LDH, pre-existing elevated uric acid, renal disease or renal involvement of tumor. Patients diagnosed with lymphoblastic lymphoma or Burkitt lymphoma are at a higher risk of developing TLS. Occasionally, patients with bulky presentation of DLBCL and patients with CLL and high white blood cell count may experience TLS at a moderately high frequency.

TLS is best managed if anticipated and when treatment is started prior to chemotherapy. The cornerstone of TLS management is hydration and the management of hyperuricemia. Allopurinol (xanthine oxidase inhibitor) and rasburicase (recombinant urate oxidase) are highly effective for the management of hyperuricemia. Allopurinol is a xanthine analog and a competitive inhibitor of xanthine oxidase, thereby blocking conversion of purine metabolites to uric acid. Allopurinol will decrease the formation of uric acid production and has been shown to reduce the incidence of uric-acid uropathy. Since the drug inhibits new uric acid formation rather than reduce existing uric acid, it can take several days for elevated levels of uric acid to normalize after the initiation of treatment, which may delay the start of chemotherapy. Furthermore, allopurinol may lead to the accumulation of xanthine crystals in renal tubules leading to acute obstructive uropathy. Allopurinol will also reduce clearance of 6-mercaptopurine and high-dose methotrexate. Rasburicase is a recombinant urate oxidase, which catalyzes the oxidation of uric acid to a highly soluble non-toxic metabolite that is readily excreted. It has been shown to be safe and highly effective in the prevention and treatment of chemotherapy-induced hyperuricemia in both children and adults with hematologic malignancies. In an international compassionate use trial in patients at risk for TLS during chemotherapy (N=280 enrolled), rasburicase (0.20 mg/kg/day IV for 1–7 days) resulted in uric acid response in all evaluable patients (n=219; adults, n=97). Among the subgroup of adults with hyperuricemia (n=27), mean uric acid levels decreased from pretreatment levels of 14.2 mg/dL to 0.5 mg/dL 24 to 48 hours after administration of last dose of rasburicase. Among adult patients at risk for TLS (but without baseline hyperuricemia; n=70), mean uric acid levels decreased from 4.8 mg/dL to 0.4 mg/dL. The GRAAL1 trial evaluated the efficacy and safety of rasburicase (0.20 mg/kg/day IV for 3–7 days, started on day 0 or day 1 of chemotherapy) for the prevention and treatment of hyperuricemia in adult patients with aggressive NHL during induction chemotherapy (N=100). Prior to chemotherapy, 66% of patients had elevated lactate dehydrogenase (LDH) levels and 11% had elevated uric acid levels (>7.56 mg/dL). Uric acid levels were normalized and maintained within normal ranges during chemotherapy in all patients. Uric acid levels decreased within 4 hours after the first injection of rasburicase. In addition, serum creatinine levels and other metabolites were also controlled with the administration of rasburicase.

A prospective, multicenter randomized phase III trial compared the efficacy and safety of rasburicase and allopurinol in adult patients with hematological malignancies at high or potential risk for TLS (N=275). Patients were randomized to receive treatment with rasburicase alone (0.20 mg/kg/day IV for days 1–5; n=92), rasburicase combined with allopurinol (rasburicase 0.20 mg/kg/day IV for days 1–3; allopurinol 300 mg/day PO for days 3–5; n=92) or allopurinol alone (300 mg/day PO for days 1–5; n=91). The rate of uric acid response (defined as plasma uric acid levels ≤7.5 mg/dL for all measurements from days 3–5) was 87% for rasburicase, 78% for rasburicase combined with allopurinol and 66% for allopurinol. The incidence of clinical TLS was similar across treatment arms, occurring in 3%, 3%
and 4% of patients, respectively. The incidence of laboratory TLS was 21%, 27%, and 41%, respectively, with significantly lower incidence observed in the rasburicase arm compared with allopurinol \((P = .003)\). The response rate with rasburicase was superior to allopurinol in the overall study population (87% vs. 66%, as above; \(P = .001\)) as well as in patients with high risk TLS (89% vs. 68%; \(P = .001\)) and in patients with baseline hyperuricemia (90% vs. 53%; \(P = .015\)). The median time to control for serum uric acid in hyperuricemic patients was 4 hours for rasburicase, 4 hours for rasburicase combined with allopurinol and 27 hours for allopurinol. Potential hypersensitivity to study regimen was reported in 4% of patients in the rasburicase arm and 1% in the combination arm; no anaphylaxis or grade 4 hypersensitivity reactions were reported in this trial. However, rasburicase can induce anaphylactic reactions. Other adverse reactions include methemoglobinemia and severe hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. A single fixed dose of rasburicase (6 mg) or a single weight-based dose of rasburicase (0.05–0.15 mg/kg) has been shown to be effective in the management of uric acid levels in adult patients with hyperuricemia or with high-risk factors for TLS. A recent phase II randomized trial compared the efficacy of rasburicase administered as a single dose (0.15 mg/kg, followed by additional days of dosing as needed) versus rasburicase (0.15 mg/kg/day) given for 5 days in adult patients at high risk or potential risk for TLS (N=80 treated). The median pretreatment uric acid level was 8.5 mg/dL for high-risk patients (n=40) and 5.6 mg/dL for potential risk patients (n=40). Nearly all treated patients (99%) showed normalization of uric acid levels within 4 hours after the first dose of rasburicase; levels of uric acid were undetectable (<0.7 mg/dL) in 84% of patients. In the single-dose rasburicase arm, 85% of patients had sustained uric acid response compared with 98% of patients in the 5-day rasburicase arm. Among high-risk patients within the single-dose arm, 6 patients received a second dose of rasburicase to achieve uric acid response.

Allopurinol should be administered prior to the initiation of chemotherapy. Rasburicase is indicated in cases where the uric acid level remains elevated despite treatment with allopurinol or in patients with renal insufficiency. Electrolytes and renal function should be monitored every 6 to 8 hours with appropriate interventions for hyperkalemia and hyperphosphatemia. Careful clinical monitoring will help to preempt complications, and in many cases, admission to ICU may be appropriate. Cardiac monitoring or serial ECG may be beneficial to identify early electrolyte-related cardiac abnormalities. Dialysis may be necessary in cases of anuric acute renal failure.

The NCCN Guidelines recommend allopurinol or rasburicase as first-line and at retreatment of hyperuricemia. Allopurinol be started 2–3 days prior to chemotherapy and continued for 10–14 days. Rasburicase is recommended for patients with any of the following risk factors: presence of any high risk feature (i.e., Burkitt lymphoma or lymphoblastic lymphomas; spontaneous TLS; elevated WBC count; elevated uric acid levels; bone marrow involvement; renal disease or renal involvement by tumor); bulky disease requiring immediate therapy; patients in whom adequate hydration is not possible; allopurinol is ineffective; or acute renal failure. A single dose is adequate in most cases; repeat dosing should be given on an individual basis.
References

60. Hoffmann M, Kletter K, Becherer A, et al. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) for staging and follow-up

Follicular Lymphoma

Diagnosis

FL is the most common subtype of indolent NHL, and accounts for about 22% of all newly diagnosed cases of NHL. About 90% of the cases have a t(14;18) translocation, which juxtaposes BCL2 with the IgH locus resulting in the deregulated expression of BCL2.

Immunophenotyping using IHC and/or flow cytometry for cell surface marker analysis is required to establish a diagnosis. FL has a characteristic immunophenotype, which includes CD20+, CD10+, BCL2+, CD23+/-, CD43-, CD5-, CCND1- and BCL6+. Occasional cases of FL may be CD10- or BCL2-. The diagnosis is easily established on histological grounds, but immunophenotyping is encouraged to distinguish FL from a nodular MCL or SLL. Low-grade FL with a high proliferation index (as determined by Ki-67 immunostaining) has been shown to be associated with an aggressive clinical behavior. There is no evidence, however, that high Ki-67 should guide the selection of therapy. Molecular genetic analysis to detect BCL2 rearrangement, cytogenetics or FISH to identify t(14;18), and immunohistochemistry for Ki-67 may be useful under certain circumstances. In patients with BCL2-negative localized disease, the diagnosis of pediatric-type FL may be considered.

The Follicular Lymphoma International Prognostic Index (FLIPI) is a prognostic scoring system based on age, Ann Arbor stage, and number of nodal sites involved, hemoglobin levels and serum LDH levels. The FLIPI was developed based on a large set of retrospective data from patients with FL, and established three distinct prognostic groups with 5-year survival outcomes ranging from 52.5% to 91% (in the pre-rituximab era). In the National LymphoCare study, which analyzed the treatment options and outcomes of 2,728 patients with newly diagnosed FL, FLIPI was able to categorize patients into three distinct prognostic groups. In a more recent study conducted by the International Follicular Lymphoma Prognostic Factor Project, a prognostic model (FLIPI-2) was developed based on prospective collection of data from patients with newly diagnosed FL treated in the era of rituximab-containing chemoimmunotherapy regimens. The final prognostic model included age, hemoglobin levels, longest diameter of largest involved lymph node, beta-2 microglobulin levels, and bone marrow involvement. FLIPI-2 was highly predictive of treatment outcomes, and separated patients into three distinct risk groups with 3-year progression-free survival (PFS) rates ranging from 51% to 91%, and OS rates ranging from 82% to 99%; the FLIPI-2 also defined distinct risk groups among the subgroup of patients treated with rituximab-containing regimens, with a PFS rate ranging from 57% to 89%. Thus, FLIPI-2 may be useful for assessing prognosis in patients receiving active therapy with rituximab-based treatments. Both the FLIPI-1 and FLIPI-2 predict for prognosis, but these index scores have not yet been established as a means of selecting treatment options. Most recently, a simpler prognostic index incorporating only the baseline serum beta 2-microglobulin and LDH levels has been devised, which appears to be as predictive of outcomes as the FLIPI-1 and FLIPI-2 indices, and is easier to apply.

In-situ Involvement of Follicular Lymphoma-like Cells of Unknown Significance (Follicular Lymphoma “in situ”)

The presence of FL-like B-cells in the germinal centers of morphologically reactive lymph nodes (initially called “in situ localization of FL” or “follicular lymphoma in situ”[FLIS]) was first described a decade ago. These cases are characterized by the preservation of
the lymph node architecture, with the incidental finding of focal strongly positive staining for BCL2 (restricted to germinal centers) and CD10 in the involved follicles, and the detection of t(14;18) by FISH. 9-12

Cases of FLIS have been reported in patients with prior FL or concurrent FL (at other sites), as well as in individuals with no known history of FL. 9-11 The occurrence of FLIS in the general population appears to be rare. Based on data from a consecutive series of unselected surgical samples of reactive lymph nodes from patients (N=132; 1294 samples), the prevalence of FLIS was 2.3%. 13 Development of (or progression to) overt lymphoma in patients found to have FLIS has been reported, although this appears to be uncommon (5–6%). 14,15 The significance or potential for malignancy of FLIS in patients without known FL remains unclear. These cases may potentially represent the tissue counterpart of circulating B-cells with t(14;18), or may represent a very early lesion with t(14;18) but without other genetic abnormalities that lead to overt lymphoma. 10,14,16 The WHO classification recommends that a diagnosis of FL not be made in such cases, but that the report should suggest evaluation for the presence of FL elsewhere, and possibly close follow-up.

Pediatric-type Follicular Lymphoma

Pediatric-type FL is considered a rare variant of FL in the 2008 WHO classification, 10 and has been reported to comprise less than 2% of childhood NHLS. 17-20 In published studies, the median age at diagnosis of pediatric FL was approximately 11 years, and the large majority of cases were stage I or II at diagnosis with a predilection for localized nodal involvement in the head and neck region. 18-22 Histologically, pediatric FL cases tend to be associated with large expansive follicles with a “starry sky” pattern, high histologic grade (grade 3), and a high proliferation index. 20-22 Expression of BCL-2 protein may be observed in approximately 40% to 50% of cases, and expression of Bcl-6 protein can be seen in the majority of cases. 19-22

Importantly, the pediatric variant of FL is generally characterized by lack of BCL2 rearrangement and t(14,18), which constitute the genetic hallmark of conventional FL cases seen in adults. 10,19-22 Rearrangement of BCL6 is also typically absent in pediatric-type FL. 20,21 Expression of BCL-2 protein (by IHC) has been reported in approximately half of the cases of FL without BCL2 rearrangement or t(14,18), as mentioned above. 20-22 Pediatric FL without BCL2 rearrangements tend to be associated with localized disease with an indolent course and favorable prognosis, with only rare instances of disease progression or relapse. 19-22 In a recent analysis of FL cases in younger patients (age <40 years; n=27), a highly indolent pediatric-type FL was identified based on the lack of BCL2 rearrangement concurrent with a high proliferation index (defined as ki-67 ≥ 30%). 21 These cases without BCL2 rearrangement but with high proliferation index (n=21) were all stage I disease and none showed disease progression or relapse. In contrast, the remaining cases (n=6) with BCL2 rearrangement and/or low proliferation index (defined as ki-67 <30%) all patients had stage III or IV disease, and 83% of these patients experienced disease progression or recurrence. Cases of indolent pediatric-type FL were also found among a separate cohort of adult patients; similar to the finding from the younger cohort of patients, adult patients without BCL2 rearrangement but with high proliferation index (n=13) all had stage I disease, and none had progressed or relapsed after a median follow-up time of 61 months. 21 This study showed that pediatric-type FL characterized by lack of BCL2 rearrangement, early-stage disease, and an indolent disease course can be diagnosed in adults. Cases of pediatric-type FL have primarily been managed with chemotherapy (with or without RT), excision only (with or without RT), and more
recently, chemoimmunotherapy with generally favorable outcomes and prognosis.19,21,23

Workup

The diagnostic workup for FL is similar to the workup for other lymphomas. The initial workup for newly diagnosed patients should include a thorough physical examination with attention to node-bearing areas, and evaluation of performance status and constitutional symptoms. Laboratory assessments should include CBC with differential and a comprehensive metabolic panel, in addition to measurements of serum lactate dehydrogenase (LDH) levels and serum beta-2 microglobulin. HBV testing is recommended due to increased risks of viral reactivation when chemoimmunotherapy regimens are being considered for treatment. Measurement of uric acid and hepatitis C testing may be useful for certain cases.

The majority of patients with FL will present with disseminated disease. The approach to therapy differs dramatically between patients with localized and those with disseminated disease. Bone marrow biopsy with aspirate is essential for documenting clinical stage I-II disease. Adequate trephine biopsy (specimen ≥ 1.6 cm)24,25 should be obtained for initial staging evaluation, along with bone marrow aspiration. If radioimmunotherapy is considered, bilateral core biopsy is recommended; in such instances, the pathologist should provide the percent of overall cellular elements and the percent of cellular elements involved in the marrow. Bone marrow biopsy can be deferred if observation is the initial option.

The majority of the NCCN Member Institutions routinely employ chest, abdominal and pelvic CT as part of the diagnostic evaluation. CT scan of the neck may also assist in defining the extent of local disease. In patients presenting with what appears to be localized disease, a PET scan may be helpful in identifying occult sites of disease or if there is concern about histologic transformation.26 PET does not replace histologic confirmation of the diagnosis; however, if there are sites with discordant high FDG-avidity, these represent the most likely sites of transformation. For patients being considered for treatment regimens containing anthracyclines or anthracyclines, a MUGA scan or echocardiogram should be obtained.

Treatment Options for Stage I-II FL

The NCCN Guidelines for FL apply to patients with grade FL1-2. Cases of FL3A and FL3B are commonly treated according to treatment recommendations for DLBCL. Involved-site radiotherapy (ISRT) remains the current standard of care for patients with early-stage FL. Results from studies with long-term follow up showed favorable outcomes with RT in these patients.27-30 In patients with stage I or II low-grade FL initially treated with involved- or extended-field RT, the median overall survival (OS) was about 14 years; 15-year OS rate was 40\% and the 15-year relapse-free survival (RFS) or progression-free survival (PFS) was also about 40\%.29,30 In both of these studies, 41\% of patients had stage I disease. The 15-year PFS outcomes were influenced by factors such as disease stage (66\% for stage I vs. 26\% for stage II disease) and maximal tumor size (49\% for tumors < 3 cm vs. 29\% for ≥ 3 cm). The OS rate was not significantly different between extended-field RT compared with IFRT (49\% vs. 40\%, respectively).30 Long-term outcomes from another study of RT in patients with early-stage grade 1-2 FL (with or without chemotherapy) reported a median OS of 19 years and a 15-year OS rate of 62\%.24 In this study, the majority of patients (74\%) had stage I disease and 24\% had received chemotherapy with RT, which may have resulted in the higher OS rate reported compared with the aforementioned studies. In a
recent study of patients with limited stage FL (grade 1 to 3A) treated with IFRT or reduced IFRT (RT of involved nodes only), the 10-year PFS and OS rates were 49% and 66%, respectively. The reduction in radiation field size did not impact PFS or OS outcomes. Observation alone has been evaluated in patients with early-stage FL for whom toxicities related to IFRT were a concern. In a retrospective analysis of patients with stage I-II disease, carefully selected patients (requirement of large abdominal radiation field, advanced age, concern for xerostomia or patient refusal) who did not receive immediate treatment had comparable outcomes to those who were treated with RT.

Sequential combination treatment with RT and chemotherapy has also been evaluated in patients with early-stage FL. In a prospective study of 44 patients with stage I-II low-grade NHL, the addition of cyclophosphamide, vincristine, prednisone, and bleomycin (COP-bleomycin) or CHOP-bleomycin to RT resulted in a 5-year failure-free survival (FFS) rate and OS rate of 74% and 89%, respectively. The combination treatment appeared to improve failure-free survival but did not impact OS in patients with early-stage disease. In a small prospective randomized study of RT alone compared with RT with adjuvant CHOP in patients with stage I low- or intermediate-grade NHL (n=44), the addition of adjuvant CHOP to RT did not improve relapse-free survival (RFS) or OS in the subgroup of patients with early-stage low-grade NHL.

In a prospective analysis based on data from the National LymphoCare study registry, outcomes with different first-line management approaches were evaluated in the subgroup of patients (rigorously staged with bone marrow biopsy and complete imaging studies) with stage I FL (n=206). First-line management strategies included observation only (i.e., “watch and wait”) in 17%, RT only in 27%, rituximab monotherapy in 12%, rituximab combined with chemotherapy (chemoimmunotherapy) in 28%, and combined modality with RT (typically involved chemoimmunotherapy prior to RT) in 13%. With a median follow up of 57 months, the median PFS with RT alone was 72 months; median PFS had not been reached with the other management approaches. After adjusting for tumor grade, LDH level and presence of B symptoms, treatment with chemoimmunotherapy or combined modality with RT improved PFS compared with RT alone (HRs of 0.36 and 0.11 respectively). PFS outcomes did not differ between RT alone, observation alone and rituximab monotherapy. With the current follow up time, no differences in OS outcomes were observed between the various management approaches. The study investigators suggested that the ‘standard’ approach of treating early-stage symptomatic FL with RT alone may be challenged in the current era of diverse therapeutic strategies.

A recent multicenter retrospective analysis evaluated outcomes in 145 patients with stage I or II FL who were managed with six different first-line treatment options (observation (i.e., “watchful waiting”), chemotherapy alone, RT alone, RT combined with chemotherapy, rituximab monotherapy and rituximab combined with chemotherapy (chemoimmunotherapy). The median age was 55 years; 58% had stage I disease and 42% had stage II disease. Bulky disease was present in 15% of patients. For patients who received active therapy, the CR rates were 57% for single-agent rituximab, 69% for chemotherapy alone, 75% for chemoimmunotherapy, 81% for RT alone and 95% for RT combined with chemotherapy. PFS rate at 7.5 years was highest with chemoimmunotherapy (60%) compared with other management options (19% with RT alone, 23% with chemotherapy alone, 26% with RT combined with chemotherapy and 26% for observation only; $P = .00135$). However, no significant differences were observed in OS at 7.5 years across the different approaches (66% with
RT alone, 74% with chemotherapy alone, 67% with RT combined with chemotherapy, 72% with observation only, and 74% with chemoimmunotherapy).³⁵

Treatment Options for Stage II (bulky) and Stage III-IV

Despite therapeutic advances that have improved outcomes, FL is generally considered a chronic disease characterized by multiple recurrences with current therapies. Several prospective randomized trials have failed to demonstrate a survival advantage with immediate treatment versus a “watch and wait” approach in patients with advanced stage, low tumor burden (or asymptomatic) FL.³⁶-³⁸ These studies used chemotherapy regimens for the immediate treatment arm, as the studies were conducted prior to the standard incorporation of rituximab in FL therapy.

A randomized phase III intergroup trial evaluated the role of immediate treatment with rituximab (with or without additional rituximab maintenance) versus watchful waiting in patients with advanced stage, asymptomatic FL (n=462).³⁹ The primary endpoint of this trial was time to initiation of new therapy from randomization. Results from an interim analysis of this trial showed that immediate treatment with rituximab resulted in significantly longer median time to initiation of new therapy compared with observation alone (not reached at 4 years vs. 33 months; \(P<.001\)); median PFS was also significantly longer with rituximab compared with observation (not reached vs. approximately 24 months; \(P<.001\)). The endpoint chosen for this trial, however, is rather controversial considering that one arm of the trial involved initiation of early therapy; a more justifiable endpoint for this study could have been “time to initiation of second therapy”. Moreover, no differences in OS were observed between the study arms.³⁹ Further follow up is needed to evaluate whether immediate treatment with rituximab has an impact on time to second-line therapy.

In a more recent randomized phase III trial conducted by ECOG (E4402 study; RESORT), patients with low tumor burden FL (by GELF criteria) were treated with standard doses of rituximab, of which responding patients were then randomized to receive immediate maintenance with rituximab (n=140) or retreatment with rituximab upon progression (n=134).⁴⁰ The primary endpoint of this trial was time to treatment failure (TTF). Results from a planned interim analysis showed that at a median follow up of 3.8 years, median TTF was similar between the maintenance arm and retreatment arm (3.9 years vs. 3.6 years). Time to initiation of cytotoxic therapy was longer with maintenance rituximab compared with retreatment (95% vs. 86% remained free of cytotoxic therapy at 3 years), but both approaches delayed the initiation of cytotoxic therapy compared with historical “watch and wait” approaches in a similar population.⁴⁰ Evaluation of OS outcomes will require further follow up.

In a recent analysis based on data from the F2-study registry of the International Follicular Lymphoma Prognostic Factor Project, outcomes were evaluated in a cohort of patients with low-tumor burden FL who were initially managed by a “watch and wait” approach (n=107).⁴¹ All of the patients in this cohort were asymptomatic, and 84% had stage III or IV disease. With a median follow up of 64 months, the median time observed without treatment was 55 months. Fifty-four patients (50%) required therapy, and among these patients, 71% received first-line treatment with rituximab-containing regimens. Multivariate analysis showed that involvement of more than 4 nodal areas was a significant independent predictor of shorter time to initiation of treatment. In order to assess whether an initial “watch and wait” approach would have negative effects on treatment efficacy during subsequent treatment,
outcomes in this cohort were compared with those of patients from the F2-study registry who had low-tumor burden, asymptomatic FL, but were initially treated with rituximab-containing regimens (n=242).41 The endpoint for the comparison was freedom from treatment failure (FFTF), which was defined as the time from diagnosis to one of the following events: progression during treatment, initiation of salvage therapy, relapse, or death from any cause. In the “watch and wait” cohort, initiation of first-line therapy was not considered an event for FFTF. The 4-year FFTF was 79% in the “watch and wait” cohort compared with 69% in the cohort initially treated with rituximab-containing regimens; the difference was not significant after adjusting for differences in baseline disease factors between the cohorts. In addition, the 5-year OS was similar (87% vs. 88%, respectively).41 The investigators concluded that “watch and wait” remained a valid strategy even in the rituximab era, for the management of patients with prognostically favorable, low-tumor burden FL.

Collectively, findings from the above studies suggest that outside of clinical trials, observation is still the standard practice for patients with advanced stage low tumor burden FL. In the clinical practice setting, treatment should only be initiated when a patient presents with indications for treatment (based on GELF criteria).

Rituximab has demonstrated single-agent activity in previously untreated patients, as well in those with relapsed or refractory disease.42-44 The addition of rituximab to combination chemotherapy regimens has consistently been associated with increased ORR, response duration and PFS outcomes.45-49 In addition, some studies have demonstrated OS benefit with the addition of rituximab; a recent meta-analysis has confirmed the benefit in OS despite what is still limited follow up for FL.50 Long-term follow-up data from a multicenter phase II trial demonstrated the safety and efficacy of rituximab combined with CHOP chemotherapy (R-CHOP) in patients with relapsed or newly diagnosed indolent NHL.46 The ORR rate was 100% with 87% of patients achieving a CR or CRu. The median time to progression and the duration of response was 82 months and 83.5 months respectively. The superiority of R-CHOP to CHOP as first-line therapy was established in a prospective randomized phase III study conducted by the German Low-Grade Lymphoma Study Group (GLSG) in previously untreated patients with advanced-stage FL (N=428). R-CHOP was associated with a 60% reduction in the relative risk for treatment failure, significantly prolonged time to treatment failure, higher ORR (but no difference in CR rate) and prolonged duration of remission.47 OS analysis was complicated by a second randomization (for patients age <60 years), which included high-dose therapy followed by autologous stem cell rescue (HDT/ASCR). Outcomes were not significantly different with and without rituximab, in patients who received consolidation with HDT/ASCR. However, in patients who received interferon maintenance (who did not undergo HDT/ASCR), duration of remission was significantly improved with R-CHOP followed by interferon compared with CHOP/interferon (median not reached vs. 26 months). In addition, among the subgroup of older patients (age ≥60 years) who received interferon maintenance (as these patients were not eligible for HDT/ASCR), R-CHOP/interferon was associated with significantly improved 4-year PFS rate (62% vs. 28%) and OS rate (90% vs. 81%) compared with CHOP/interferon.51

In a randomized phase III study, addition of rituximab to CVP chemotherapy (R-CVP; n=162) compared with CVP (n=159) significantly improved outcome in patients with previously untreated FL, with no significant increase in toxicity.48 At a median follow-up of...
53 months, R-CVP was associated with improved ORR (81% vs. 57%), CR/CRu rate (41% vs. 10%), median time to progression (34 months vs. 15 months) and 4-year OS rate (83% vs. 77%).

The addition of rituximab to fludarabine or fludarabine-based combination has also been evaluated in various clinical studies. In a phase II study, rituximab combined with fludarabine (FR) was evaluated in patients with previously untreated or relapsed low-grade or follicular NHL (n=40; 68% previously untreated). The ORR was 90% with 80% of patients achieving a CR. With a median follow-up time of 44 months, the median response duration, time to progression and OS had not been reached. The probability of OS at 50 months was estimated to be 80%. No significant differences in response or OS outcomes were noted between previously untreated and relapsed patients. In a prospective randomized phase III trial (n=147; 128 evaluable patients), the combination of rituximab and FCM (fludarabine, cyclophosphamide, mitoxantrone; R-FCM) was associated with superior outcomes compared with FCM in patients with relapsed or refractory FL and MCL. R-FCM resulted in significantly higher ORR (79% vs. 58%; P=0.01), higher CR rates (33% vs. 13%; P = .005), improved median PFS (16 months vs. 10 months; P = .038) and improved median OS (not reached at 3 years vs. 24 months; P=0.003) compared with FCM alone. In addition, among the subgroup of patients with FL (n=65), R-FCM was associated with significantly improved median PFS (not reached at 3 years vs. 21 months; P = .014); median OS (not reached in either treatment arm) was not significantly different. In a randomized trial from the MD Anderson Cancer Center (MDACC), concurrent administration of rituximab with FND regimen (fludarabine, mitoxantrone and dexamethasone; R-FND) resulted in a significantly higher 3-year FFS rate (84% vs. 59% for sequential arm) in the subset of patients with FL. In a subsequent report from the MDACC that included an analysis of this study (concurrent or sequential inclusion of rituximab with FND) in patients with FL (n=151), the median FFS and OS had not been reached at a median follow up of 3.3 years; the 5-year FFS rate and OS rate with the regimen was 60% and 95%, respectively. The combination of rituximab with fludarabine and mitoxantrone (R-FM) was evaluated in a phase II trial in patients with relapsed/refractory FL with high tumor burden (based on GELF criteria; n=50). None of the patients were previously treated with rituximab, fludarabine or mitoxantrone. The ORR with this regimen was 84% (CR/CRu in 68%). The 3-year PFS rate and OS rate was 47% and 66%, respectively.

The incorporation of rituximab to chemotherapy regimens has become a widely accepted standard of care for first-line therapy for patients with FL. However, no head-to-head randomized studies have shown superiority of one chemoimmunotherapy regimen over another with regards to OS outcomes. A report from the prospective, multicenter observational National LymphoCare Study based on the data collected from a large population of previously untreated patients with FL in the U.S. (n=2,738) showed that rituximab-containing chemoimmunotherapy was used in 52% of patients. Among these patients, the most commonly employed regimens included R-CHOP (55%), R-CVP (23%) and rituximab with fludarabine-based regimens (R-Flu; 15.5%). In a recent analysis of patients treated with these rituximab-containing regimens in the National LymphoCare Study, 2-year PFS rates were similar between patients treated with R-CHOP, R-CVP or R-Flu (78% vs. 72% vs. 76%). The 2-year OS rate showed significant differences, however (94% vs. 88% vs. 91%, respectively), with OS benefits observed for R-CHOP compared with R-CVP; this benefit with R-CHOP was more apparent in the subgroup of patients with poor-risk FLIPI scores.
The phase III randomized trial of the Italian Lymphoma group (FOLL-05 Trial) evaluated the efficacy of three chemoimmunotherapy regimens (R-CVP, R-CHOP and R-FM) as first-line therapy in patients with advanced stage FL (n=534). The primary endpoint of this study was time to treatment failure (TTF). The 3-year TTF rate was 46% for patients randomized to R-CVP, 62% for R-CHOP (P = .003 versus R-CVP) and 59% with R-FM (P=0.006 versus R-CVP), after a median follow up of 34 months. The 3-year PFS was 52%, 68%, and 63%, respectively (P = .011). No significant differences were observed between treatment arms for ORR or CR rates. The 3-year OS rate was 95% for all patients in this study.

Grade 3 or 4 neutropenia was more common in the R-FM arm, occurring in 64% of patients, compared with 28% with R-CVP and 50% with R-CHOP. The incidence of secondary malignancies was also more common with R-FM (8%) than with R-CVP (2%) or R-CHOP (3%). Although these studies suggest a potential advantage of R-CHOP over R-CVP, both regimens are considered standard first-line therapies, and the selection of the optimal therapy would mainly depend on individual patient factors.

Fludarabine-based chemoimmunotherapy regimens may not be an ideal treatment option in the front-line setting because of the stem cell toxicity and increased risks for secondary malignancies associated with such regimens. This may be of particular concern for younger patients with FL who may be candidates for autologous stem cell transplantation in the future. Prior exposure to fludarabine has been associated with poorer mobilization of peripheral blood stem cells in patients with lymphoma.

Bendamustine, an alkylating agent with a purine-like benzimidazole ring component, has been shown to have low or incomplete cross-resistance with other alkylating agents due to its unique cytotoxic properties. Bendamustine (as a single agent or in combination with rituximab) has shown promising results with acceptable toxicity in patients with newly diagnosed as well as heavily pretreated relapsed or refractory indolent or mantle cell histologies or transformed NHL. A multicenter randomized open-label phase III study conducted by the StiL (Study Group Indolent Lymphomas) compared rituximab combined with bendamustine (BR) with R-CHOP as first-line treatment in patients with advanced follicular, indolent, and mantle cell lymphomas (n=514). The primary endpoint of this study was PFS, which was significantly longer with BR compared with R-CHOP (median 69.5 months vs. 31 months; hazard ratio=0.58, 95% CI 0.44–0.74; P <.0001). Median PFS was significantly longer with BR in the subgroup of patients with FL (n=279; not reached vs. 41 months; P =.0072). The ORR was similar between treatment arms (93% with BR; 91% with R-CHOP), although the CR rate was significantly higher in the BR arm (40% vs. 30%; P =.021). With a median follow up of 45 months, no significant difference in OS was observed between treatment arms, and median OS has not been reached in either arm. The BR regimen was associated with a lower incidence of serious adverse events compared with R-CHOP (19% vs. 29%). In addition, BR was associated with less frequent grade 3 or 4 neutropenia (29% vs. 69%) or infections (any grade; 37% vs. 50%). Erythema (16% vs. 9%) and allergic skin reactions (15% vs. 6%) were more common with BR compared with R-CHOP. The incidence of secondary malignancies was similar, with 20 cases (8%) in the BR arm and 23 cases (9%) with R-CHOP.

Another ongoing multicenter randomized open-label phase III study is evaluating the efficacy and safety of the BR regimen compared with R-CHOP/R-CVP in patients with previously untreated indolent NHL or mantle cell lymphoma (BRIGHT Study). Among evaluable patients (N=419), the CR rate (assessed by an independent review committee) with BR was not inferior to R-CHOP/R-CVP (31% vs. 25%). The CR
rate in the subgroup of patients with indolent NHL was 27% and 23%
respectively. BR was associated with less grade 3 or 4 neutropenia
(by laboratory assessment: 44% vs. 70%) but more infusion-related
reactions (6% vs. 4%) compared with R-CHOP/R-CVP. Fatal adverse
events occurred in 6 patients (3%) in the BR arm and 1 patient (<1%)
in the R-CHOP/R-CVP arm. In a phase II multicenter study, BR
resulted in an ORR of 92% (CR in 41%) in patients with relapsed or
refractory indolent and mantle cell lymphomas (N=67). The median
duration of response and PFS were 21 months and 23 months,
respectively. Outcomes were similar for patients with indolent or
mantle cell histologies.

Bendamustine combined with rituximab and the proteasome inhibitor
bortezomib (BVR) has been evaluated in two recent phase II studies in
patients with relapsed and/or refractory FL. In a study of 30
patients with relapsed/refractory indolent or mantle cell lymphoma (16
patients had FL; high-risk FLIPI, 56%; median 4 prior therapies), BVR
regimen was associated with an ORR of 83% (CR in 52%). The
ORR was 93% among the subgroup of patients with FL and 75% for
the subgroup with rituximab-refractory disease (n=10). The 2-year
PFS rate was 47% and the median PFS for all patients was
approximately 22 months. Serious adverse events were reported in 8
patients, which included 1 death due to sepsis. In another study
(VERTICAL) that evaluated a different BVR combination regimen in
patients with relapsed/refractory FL (n=73; high-risk FLIPI, 38%;
median 2 prior therapies), the ORR (among n=60 evaluable) was 88%
(CR in 53%). The median duration of response was 12 months.
Among the subgroup of patients refractory to prior rituximab (n=20
evaluable), the ORR was 95%. The median PFS for all patients on the
study was 15 months. Serious adverse events were reported in 34% of
patients; the most common grade 3 or 4 adverse events were
myelotoxocities, fatigue, peripheral neuropathy, and gastrointestinal
symptoms.

The immunomodulating agent lenalidomide (a thalidomide analog
indicated for the treatment of multiple myeloma and myelodysplastic
syndromes), with or without rituximab, has also been evaluated in the
treatment of both patients with previously untreated and
relapsed/refractory indolent NHL. In a phase II trial of patients with
relapsed/refractory indolent NHL (n=43; median 3 prior therapies),
single-agent lenalidomide induced an ORR of 23% (CR/CRu in 7%).
Among the subgroup of patients with FL (n=22), the ORR was 27%.
The median duration of response was longer than 16.5 months, and
has not been reached. Median PFS for all patients was 4.4 months.

An ongoing randomized phase II trial is assessing the activity of
lenalidomide alone compared with lenalidomide in combination with
rituximab (CALGB 50401 study) in patients with recurrent FL (N=94;
n=89 evaluable). The ORR with lenalidomide alone was 49% (CR in
13%) and with the combination regimen was 75% (CR in 32%). With a
median follow up of 1.5 years, median EFS was significantly longer
with the combination (2 years vs. 1.2 years; P=.0063). Approximately
19% of patients in each arm discontinued therapy due to adverse
events. Grade 3 or 4 adverse events were reported in a similar
proportion of patients in the monotherapy and combination arms (49%
vs. 52%; grade 4 in 9% in each arm). The most common grade 3 or 4
toxicities included neutropenia (16% vs. 19%), fatigue (9% vs. 14%),
and thrombosis (16% vs. 4%). The combination of lenalidomide and
rituximab was also evaluated in a phase II study in patients with
previously untreated indolent NHL (N=110; n=103 evaluable). Among
the subgroup of patients with FL (n=46), the ORR was 98% (CR/CRu
in 87%) and the 2-year PFS was 89%. In patients with FL who had a
positive PET scan prior to therapy (n=45), 93% achieved
PET-negative response after treatment. Grade 3 or greater
neutropenia was common, and occurred in 40% of patients overall. Thrombosis was reported in 3 patients (3%).

Radioimmunotherapy (RIT) with the radio-labelled monoclonal antibodies 90Y-ibritumomab tiuxetan and 131I-tositumomab has been evaluated in patients with newly diagnosed, as well as those with relapsed, refractory or histologically transformed FL. In an international phase II trial, 90Y-ibritumomab when used as a first-line therapy in older patients (age >50 years) with stage III or IV FL (N=59; median age 66 years, range 51–83 years) resulted in an ORR of 87% (CR in 41%, CRu in 15%) at 6 months after therapy. After a median follow-up of approximately 31 months, the median PFS was 26 months and median OS has not been reached. The most common toxicities with first-line 90Y-ibritumomab included grade 3 or 4 thrombocytopenia (48%; grade 4 in 7%) and neutropenia (32%; grade 4 in 17%). No grade 3 or 4 non-hematologic toxicities were reported. Grade 2 infections occurred in 20% and grade 2 GI toxicities in 10% of patients.

In a randomized phase III study in patients with relapsed or refractory low-grade, follicular or transformed lymphoma (n=143), 90Y-ibritumomab tiuxetan also produced statistically and clinically significant higher ORR (80% vs. 56%) and CR rate (30% vs. 16%) compared with rituximab alone. At a median follow-up of 44 months, median TTP (15 vs. 10 months) and duration of response (17 vs. 11 months) were longer for patients treated with 90Y-ibritumomab compared with rituximab.

Initial treatment with a single one-week course of 131I-tositumomab induced prolonged clinical and molecular remissions in patients with advanced FL (N=76). After a median follow-up of 10 years, the median duration of response was 6 years. For the 57 patients with a CR, median PFS was almost 11 years. Ten-year PFS and OS rates were approximately 40% and 82%, respectively. Secondary malignancies were reported in 11 patients (14%) during this long-term follow-up period, and 1 patient (1%) developed MDS about 8 years after therapy. A single course of 131I-tositumomab was significantly more efficacious than the last qualifying chemotherapy in extensively pretreated patients with refractory, low-grade, or transformed NHL (n=60). The final results of the study demonstrated that 131I-tositumomab resulted in long-term durable CRs. Among the 12 patients who achieved a CR, the median duration of response was nearly 10 years; among the 5 patients who continued in CR (lasting ≥10 years), none had received prior rituximab therapy. Phosphatidylinositol 3-kinase (PI3K) plays a central role in the normal B-cell development and function. PI3Kδ signaling pathways are frequently hyperactive in B-cell neoplasms. Idelalisib, the isoform-selective oral inhibitor of PI3K-delta, has demonstrated promising clinical activity in phase I studies in patients with indolent NHL. The safety and efficacy of idelalisib in patients with relapsed indolent NHL was evaluated in a phase II multicenter single arm study. In this study, 122 patients with indolent NHL (72 patients with FL, 28 patients with SLL and 15 patients with MZL) that had not responded to previous treatment with rituximab and an alkylating agent were treated with idelalisib (150 mg oral, BID) until disease progression or patient withdrawal from the study. Majority of the patients (89%) had stage III or IV disease. Among patients with FL, 79% of patients were of intermediate-risk or high-risk, based on FLIPI scores and 17% of patients had FL grade 3a. The primary end point of the study was the ORR. The median duration of treatment with idelalisib was 6.6 months. Idelalisib resulted in tumor reductions in 90% of the patients, with an ORR of 57% (6% CR and 50% PR). Response rates were similar across all subtypes of indolent NHL. The median duration of response, median PFS and OS were 12.5 months, 11.0 months and 20.3 months, respectively. At 48 weeks, 47% of the
patients remained progression-free. The median follow-up was 9.7 months. The most common adverse events of grade 3 or higher were neutropenia (27%), elevations in aminotransferase levels (13%), diarrhea (13%), and pneumonia (7%). Fatal and/or serious hepatotoxicity, severe diarrhea or colitis, pneumonitis, and intestinal perforation have been observed in patients treated with idelalisib.88 See “Special Considerations for the use of BCR Inhibitors” in the guidelines for monitoring and management of adverse reactions associated with idelalisib.

Based on the results of this study, idelalisib (150 mg oral, BID) was recently approved by the FDA for the treatment of relapsed FL that has not responded to at least two prior systemic therapies. The NCCN Guidelines have included idelalisib as an option for second-line therapy for patients with relapsed or refractory FL.

First-line Consolidation with RIT
First-line chemotherapy followed by RIT with 90Y-ibritumomab89-92 or 131I-tositumomab93-96 has also been evaluated in several phase II studies.

In the international phase III trial (First-line Indolent Trial; FIT), patients with advanced stage FL responding to first-line induction therapy (n=414) were randomized to receive 90Y-ibritumomab or no further treatment (observation only).91 After a median follow-up of 7.3 years, the estimated 8-year PFS was 41% with 90Y-ibritumomab tiuxetan consolidation and 22% with observation only, with a median PFS of 4.1 years versus 1.1 years, respectively ($P < .001$).97 No significant difference in OS was observed between treatment arms. The incidence of secondary malignancies was higher in the consolidation arm (3% vs. <1%), with a significantly increased actuarial 8-year incidence rate (4.2% vs. 0.6%; $P < .042$). The median time from randomization to second malignancies was 58 months. The FIT study included only a small number of patients (14%) who received rituximab in combination with chemotherapy as induction.91,97 Among these patients, the estimated 8-year PFS rate was 56% with 90Y-ibritumomab consolidation and 45% with observation alone; the median PFS was greater than 7.9 years and 4.9 years, respectively. The difference in PFS outcomes was not significant in this subgroup; however, the trial was not statistically powered to detect differences in subgroups based on induction therapies.97 Since only a small proportion of patients enrolled in the FIT trial received rituximab-containing induction therapy, the effects of RIT consolidation following rituximab-containing regimens cannot be fully evaluated.

In the Southwest Oncology Group (SWOG S9911) trial, CHOP followed by 131I-tositumomab resulted in an ORR of 91%, including a 69% CR rate in patients with previously untreated, advanced FL (n=90).95 After a median follow-up of 5 years, the estimated 5-year PFS rate and OS rate was 67% and 87%, respectively.94 In a historical comparison, these results were more favorable than those reported for CHOP alone. In a multicenter phase II study, CVP chemotherapy followed by 131I-tositumomab resulted in an ORR of 100% with a 93% CR rate in untreated patients with FL (n=30). The 5-year PFS rate and OS rate was 56% and 83%, respectively.96 The phase III randomized Intergroup study by the SWOG/CALGB (S0016) evaluated the role of RIT consolidation with 131I-tositumomab (CHOP-RIT) following first-line therapy in patients with advanced stage FL.7 In this study, 554 patients were randomized to first-line therapy with 6 cycles of R-CHOP or 6 cycles of CHOP followed by consolidation with 131I-tositumomab (CHOP-RIT).7 After a median follow-up time of 4.9
years, the estimated 2-year PFS (76% vs. 80%) and OS (97% vs. 93%) rates were not significantly different between R-CHOP and CHOP-RIT. Median time to progression has not yet been reached for either study arm. Both the ORR (84% in each arm) and CR rates (40% vs. 45%, respectively) were also similar between treatment arms. CHOP-RIT was associated with a higher incidence of grade 3 or 4 thrombocytopenia (18% vs. 2%) but fewer febrile neutropenia (10% vs. 16%) compared with R-CHOP. The incidences of secondary malignancies (9% vs. 8%) and AML/MDS (1% vs. 3%) were not different between R-CHOP and CHOP-RIT.⁷

An ongoing trial (SWOG study S0801) is evaluating whether R-CHOP with RIT consolidation and with maintenance rituximab will provide improved efficacy outcomes. Data from this trial are awaited to assess the role of RIT consolidation in patients with FL treated with rituximab-containing induction.

First-line Consolidation with Maintenance Rituximab

Several studies have reported that prolonged administration of rituximab (or rituximab maintenance) significantly improved EFS in chemotherapy-naïve patients responding to initial rituximab induction, although this benefit did not translate to OS advantage.⁹⁶-¹⁰⁰ In a study that evaluated maintenance rituximab compared with retreatment with rituximab upon progression in patients with chemotherapy-treated indolent lymphomas responsive to rituximab therapy (n=90 randomized), maintenance rituximab significantly improved PFS compared with the retreatment approach (31 months vs. 7 months; \(P=0.007 \)).¹⁰¹ However, retreatment with rituximab at progression provided the same duration of benefit from rituximab as did maintenance rituximab (31 months vs. 27 months).¹⁰¹ Therefore, either approach (maintenance or retreatment at progression) appeared to be beneficial for this patient population. The randomized phase III study from ECOG (E1496) demonstrated a PFS benefit with rituximab maintenance in patients with advanced indolent lymphoma responding to first-line chemotherapy with CVP (n=311; FL, n=282).¹⁰² The 3-year PFS rate was 68% for maintenance rituximab compared with 33% for observation for all patients with advanced indolent lymphoma with response or stable disease after CVP chemotherapy. For the subgroup of patients with FL, the corresponding PFS rates were 64% and 33%, respectively; the 3-year OS rate was not significantly different in patients with FL (91% vs. 86%, respectively).¹⁰²

The phase III randomized PRIMA trial prospectively evaluated the role of rituximab maintenance in patients responding to first-line chemotherapy in combination with rituximab.¹⁰³ In this study, patients with FL responding to first-line chemoimmunotherapy (R-CVP, R-CHOP or R-FCM) were randomized to observation only or rituximab maintenance for 2 years (n=1018). After a median follow-up of 36 months, the 3-year PFS rate was 75% in the rituximab maintenance arm and 58% in the observation arm (\(P = 0.0001 \)). Two years after randomization, 71.5% of patients in the rituximab maintenance arm were in CR/CRu compared with 52% in the observation group.¹⁰³ However, no significant difference was observed in OS between the two groups. Based on multivariate analysis, induction therapy with R-CHOP or R-FCM was one of the independent factors associated with improved PFS, suggesting that R-CVP induction was not as beneficial in this study. Longer follow up is needed to evaluate the effect of rituximab maintenance on OS.

Second-line Consolidation with Maintenance Rituximab

Rituximab maintenance following second-line therapy has also been evaluated in patients with relapsed/refractory disease. Two large randomized trials have demonstrated a PFS advantage with rituximab maintenance over observation for patients treated with...
chemoimmunotherapy induction. In a prospective phase III randomized study by the GLSG, rituximab maintenance after second-line treatment with R-FCM significantly prolonged duration of response in the subgroup of patients with recurring or refractory FL (n=81); median PFS with rituximab maintenance was not reached compared with 26 months in the observation arm (P =.035). In a phase III randomized Intergroup trial (EORTC 20981) in patients with relapsed or resistant FL (n=334), responding to CHOP or R-CHOP induction therapy, maintenance rituximab significantly improved median PFS (3.7 years vs. 1.3 years; P <.001) compared with observation alone. This PFS benefit was observed regardless of the induction therapy employed (CHOP or R-CHOP). With a median follow-up of 6 years, the 5-year OS rate was not significantly different between study arms (74% vs. 64%, respectively).

Imaging Studies for FL

Imaging studies using CT or PET-CT scans are important components of diagnostic workup, interim restaging, and post-treatment assessments in patients with lymphomas. For patients with FL, CT scans of the chest, abdominal and pelvic regions are considered essential for diagnostic workup. The use of PET-CT is considered optional or useful in selected patients with FL during workup or for post-treatment assessment. Although PET-CT is now considered a standard part of post-treatment response evaluation in patients with aggressive NHLs or Hodgkin lymphoma, its role in patients with indolent lymphomas is less certain.

Several studies have reported on the potential usefulness of PET imaging in patients with indolent lymphomas, and documented the ability of this modality to detect lesions with high sensitivity (94–98%) and specificity (88–100%). Studies have also suggested that PET/CT scans may be more accurate than CT scans alone in detecting disease. In addition, post-treatment PET/CT scans have demonstrated prognostic utility in patients with indolent lymphomas. Several studies have shown that PET status (i.e., PET-positivity or PET-negativity at the end of induction therapy) was associated with PFS outcomes. In these studies, PET-negativity was associated with a longer PFS compared to PET-positivity. In a retrospective study in patients with FL treated with R-CHOP, PET/CT imaging was found to be more accurate than CT imaging in detecting both nodal and extranodal lesions at staging and in assessing response to treatment. Post-treatment PET/CT-negativity was associated with more favorable PFS outcomes; median PFS was 48 months among PET/CT-negative cases compared with 17 months for positive cases (P <.001). An exploratory retrospective analysis of the prognostic value of post-induction PET/CT scans was conducted based on data obtained.
from the PRIMA trial of patients with FL. In this trial, patients with previously untreated FL treated with rituximab-containing chemoimmunotherapy were randomized to rituximab maintenance (for 2 years) or observation only. Among patients with a post-induction PET/CT scan (n=122), those with a positive PET/CT scan had a significantly inferior PFS rate compared with those who were PET negative (33% vs. 71% at 42 months; P < .001). The median PFS was 20.5 months and not reached, respectively. Among the patients randomized to observation (n=57), PET/CT status remained significantly predictive of PFS outcomes. In this group, the 42-months PFS rate was 29% for PET/CT-positive patients compared with 68% in PET/CT-negative cases; median PFS was 30 months and 52 months, respectively. Among the patients randomized to rituximab maintenance (n=47), PET/CT positivity was associated with inferior (but not statistically significant) PFS outcomes compared with PET/CT-negative cases (56% vs. 77% at 41 months); median PFS has not yet been reached in either the PET/CT-positive or PET/CT-negative subgroups. Moreover, PET/CT status was also associated with OS outcomes in this exploratory analysis. Patients who were PET/CT-positive after induction therapy had significantly inferior (but not statistically significant) PFS outcomes compared with PET/CT-negative cases (56% vs. 77% at 41 months); median PFS has not yet been reached in either the PET/CT-positive or PET/CT-negative subgroups. Moreover, PET/CT status was also associated with OS outcomes in this exploratory analysis. Patients who were PET/CT-positive after induction therapy had significantly inferior OS compared with PET/CT-negative patients (78.5% vs. 96.5% at 42 months; P = .001).

In a recent prospective study, the prognostic value of PET imaging was evaluated in patients with high-tumor burden FL treated with first-line therapy with 6 cycles of R-CHOP (n=121; no maintenance rituximab administered). PET scans were performed after 4 cycles of R-CHOP (interim PET) and at the end of treatment (final PET), and all scans were centrally reviewed. A positive PET was defined as Deauville score 4 or higher. Among patients with an interim PET scan (n=111), 76% had a PET-negative response. Among patients with a final PET (n=106), 78% had a PET-negative response. At the end of treatment, nearly all patients (98%) who achieved a CR based on IWC also achieved a PET-negative response. Interim PET was associated with significantly higher 2-year PFS (86% for PET negative vs. 61% for positive; P=0.0046) but no significant difference in terms of OS. Final PET-negativity was associated with both significantly higher 2-year PFS (87% vs. 51%; P < .001) and higher OS (100% vs. 88%; P=0.013). These studies suggest that post-treatment imaging studies may have a role as a predictive factor for survival outcomes in patients with FL. Further prospective studies are warranted to determine whether interim and/or end-of-treatment PET scans have a role in guiding post-induction therapeutic interventions.

PET scans may be useful in detecting transformation in patients with indolent NHL. Standard FDG uptake values (SUV) on PET have been reported to be higher among transformed than non-transformed cases of indolent lymphomas. High SUVs on PET imaging should raise the suspicion of transformation to aggressive lymphoma, and can be used to direct the optimal site of biopsy for histological confirmation.

Little data exist on the potential role of follow-up surveillance imaging for detection of relapse in patients with indolent NHL. In an early retrospective study, patients with stage I to stage III FL with a CR after induction were evaluated with clinical, laboratory and imaging studies during routine follow up (n=257). Patients underwent CT scans of the abdomen and/or pelvis during follow-up visits. Follow up was typically performed every 3 to 6 months for the first 5 years of treatment, and then annually thereafter. The median follow-up time was 80 months (range, 13–209 months). Relapse was detected in 78 patients, with the majority of relapses (77%) occurring within the first 5 years of treatment. Eleven of the relapses were detected with abdominal and/or pelvic CT scans alone. Thus, in this analysis, 4% of patients with
an initial CR had recurrence determined by routine surveillance with CT scans.124 A more recent prospective study evaluated the role of surveillance PET scans in patients with lymphomas (Hodgkin lymphoma and NHL) with a CR after induction.125 PET scans were performed every 6 months for the first 2 years after completion of induction, then annually thereafter. In the cohort of patients with indolent NHL (n=78), follow-up PET scans detected true relapses in 10% of patients (8 of 78) at 6 months, 12% (8 of 68) at 12 months, 9% (5 of 56) at 18 months, 9% (4 of 47) at 24 months, 8% (3 of 40) at 36 months and 6% (2 of 34) at 48 months.125 Among 13 patients who were PET-positive without a corresponding abnormality on CT scan, relapse was documented in 8 of these patients by biopsy. Of the 47 patients with PET-positive relapses, 38 patients were detected on CT and 30 patients were detected clinically at the same time as the PET. It is unclear whether this earlier detection of relapse in a proportion of patients translates to improved outcomes.

In the absence of evidence demonstrating improved survival outcomes with early PET detection of relapse, PET scans are not recommended for routine surveillance in patients who have achieved a CR after treatment.

NCCN Recommendations for Treatment of Stage I-II Disease

Involved-site radiotherapy (ISRT; 24–30 Gy, with an additional 6 Gy in selected patients with bulky disease) is the preferred treatment option for patients with stage I or contiguous stage II disease. In selected cases where toxicity of ISRT outweighs the potential clinical benefit, observation may be appropriate. Alternate treatment options include immunotherapy with or without chemotherapy with or without RT. Because chemotherapy added to RT was not shown to provide relapse-free survival benefit, chemotherapy plus RT is included in the NCCN Guidelines with a category 2B recommendation.

For patients with a PR following initial immunotherapy with or without chemotherapy (but without RT), additional treatment with ISRT should be considered. Otherwise, for patients with a clinical PR (following ISRT) or CR, clinical follow-up with a complete physical exam and laboratory assessment should be performed every 3 to 6 months for the first 5 years, and then annually (or as clinically indicated) thereafter. Surveillance imaging with CT scans can be performed no more than every 6 months up to the first 2 years following completion of treatment, and then no more than annually (or as clinically indicated) thereafter. Patients with no response to initial therapy should be managed in the same manner as patients with advanced disease, as described below.

NCCN Recommendations for Treatment of Stage II (bulky) and Stage III-IV Disease

As previously mentioned, treatment for patients with advanced-stage FL in the clinical practice setting should only be initiated when indicated by the GELF criteria. The modified criteria used to determine treatment initiation include: symptoms attributable to FL (not limited to B-symptoms); threatened end-organ function; cytopenia secondary to lymphoma; bulky disease (single mass >7 cm or 3 or more masses >3 cm), splenomegaly; and steady progression over at least 6 months. Treatment decisions should also consider the patient’s preference; however, patients opting for immediate treatment in the absence of a clinical indication should be referred to an appropriate clinical trial. The selection of treatment should be highly individualized according to the patient’s age, extent of disease, presence of comorbid conditions, and the goals of therapy. When choosing an initial therapy, care should be given to avoid excessively myelotoxic regimens in patients who may subsequently be candidates for HDT/ASCR. Chemoimmunotherapy
regimens (containing rituximab) frequently used in the management of FL may be associated with risks for reactivation of HBV, which can lead to hepatitis and hepatic failure. Therefore, prior to initiation of therapy, HBV testing (including HBsAg and HBCAb testing) should be performed for all patients; viral load should be monitored routinely for patients with positive test results. In addition, the use of empiric antiviral therapy or upfront prophylaxis should be incorporated into the treatment plan.

First-line Therapy
In the absence of an appropriate clinical trial, patients with indications for treatment should be treated with systemic therapy. In selected cases such as the elderly frail patient who would not tolerate chemotherapy, ISRT (4 Gy) may be used for local palliation. Asymptomatic patients, especially those older than 70 years of age, should be observed.

Based on the reported data, rituximab in combination with bendamustine, CHOP or CVP chemotherapy for first-line therapy in patients with advanced FL are all category 1 recommendations. In the absence of a randomized trial showing superior OS with R-CHOP versus R-CVP, either of these regimens can be considered appropriate in the first-line setting. The BR regimen has been shown to have less toxicity and a superior PFS compared to R-CHOP in a randomized phase III study; however, the OS outcomes were not significantly different. Furthermore, we have limited data on the risk of secondary MDS/AML after bendamustine. Data from a limited subset of patients suggests that peripheral blood stem cells can be collected after both BR and R-CHOP; additional data are needed to confirm this finding. Other suggested regimens include rituximab either as a single agent or in combination with fludarabine-based chemotherapy. As discussed earlier, the use of fludarabine-containing regimens may not be ideal in the first-line setting for younger, physically fit patients (who may be candidates for future HDT/HSCR) because of the stem cell toxicity and risks for secondary malignancies. Thus, the use of regimens such as R-FND in the first-line setting is included as a category 2B recommendation. RIT is included as a category 3 option due to the absence of additional data from randomized studies. ISRT (4–30 Gy) with or without systemic therapy can be considered for palliation in patients with locally bulky or symptomatic disease if they are unable to tolerate systemic therapy.

Single-agent rituximab is the preferred first-line therapy for elderly or infirm patients. Single-agent cyclophosphamide had equivalent OS and CR rates compared to cyclophosphamide-based combination chemotherapy. The NCCN Guidelines have also included RIT, alkylating agent-based chemotherapy (cyclophosphamide or chlorambucil) with or without rituximab, as alternative options for elderly or infirm patients.

First-line Consolidation or Extended Dosing
Patients with CR or PR to first-line therapy can either be observed or can be treated with optional consolidation or extended therapy. Based on the results of the PRIMA study, maintenance therapy with rituximab (one dose every 8 weeks) up to 2 years is recommended (category 1) for patients responding to first-line chemoimmunotherapy. Based on the results of the FIT trial, RIT is recommended (category 1) for patients who received first-line chemotherapy. As of February 2014, 131I-tositumumab has been discontinued and will no longer be available for the treatment of patients with FL.

For patients receiving consolidation therapy, clinical follow-up with a complete physical exam and laboratory assessment should be performed every 3 to 6 months for the first 5 years, and then annually.
(or as clinically indicated) thereafter. Surveillance imaging with CT scans can be performed no more than every 6 months up to the first 2 years following completion of treatment, and then no more than annually (or as clinically indicated) thereafter.

Second-line Therapy for Relapsed or Progressive Disease

Frequently, patients will benefit from a second period of observation after progressing from first-line therapy. Thus, treatment for relapsed or progressive disease is based on the modified GELF criteria as in first-line therapy. Progressive disease should be histologically documented to exclude transformation, especially in the presence of raising LDH levels, disproportional growth in one area, development of extranodal disease or development of new constitutional symptoms. Areas of high SUV, especially in values in excess of 13.1, should raise suspicion for the presence of transformation. However, a positive PET/CT scan does not replace a biopsy; rather, results of the PET/CT scan should be used to direct a biopsy to enhance the diagnostic yield from the biopsy. For patients requiring second-line therapy or treatment for disease unresponsive to first-line regimens, the options include chemoinmunotherapy regimens used for first-line treatment, BVR (bendamustine, bortezomib, rituximab), fludarabine combined with rituximab, FCM-R regimen (category 1) or RIT (category 1) or any of the second-line regimens used for patients with DLBCL. Based on the recent FDA approval, idelalisib is also included as an option for second-line therapy.

As of February 2014, 131I-tositumumab has been discontinued and will no longer be available for the treatment of patients with FL.

Second-line Consolidation or Extended Dosing

For patients in remission after second-line therapy, optional maintenance therapy with rituximab (one dose every 12 weeks for 2 years) can be recommended (category 1). However, the NCCN Guidelines panel recognizes that the efficacy of maintenance rituximab in the second-line setting would likely be impacted by a patient’s response to first-line maintenance with rituximab. If a patient progressed during or within 6 months of first-line maintenance with rituximab, the clinical benefit of maintenance in the second-line setting is likely very minimal. HDT/ASCR is an appropriate consolidative therapy for patients with second or third remission. Allogeneic HSCT may also be considered for highly selected patients. For patients receiving consolidation therapy, clinical follow-up with a complete physical exam and laboratory assessment should be performed every 3 to 6 months for the first 5 years, and then annually (or as clinically indicated) thereafter. Surveillance imaging with CT scans can be performed no more than every 6 months up to the first 2 years following completion of treatment, and then no more than annually (or as clinically indicated) thereafter.

Histological Transformation to DLBCL

In patients with FL, histological transformation to DLBCL is generally associated with a poor clinical outcome. Histological transformation to DLBCL occurs at an annual rate of approximately 3% for 15 years and the risk of transformation falls after that time, for reasons that remain unclear. In a multivariate analysis, advanced stage disease at diagnosis was the only predictor of future transformation. The median OS after transformation has been reported to be less than 2 years. However, patients with limited disease with no previous exposure to chemotherapy may have the favorable outcomes similar to de novo DLBCL. The 5-year OS rate for patients with limited extent transformation was 66% compared with 19% for those with advanced disease (P<0.0001).
In cases where the patient has had multiple prior therapies, the prognosis is much poorer and enrollment in an appropriate clinical trial is the preferred option. In the absence of a suitable clinical trial, treatment options include RIT, chemotherapy with or without rituximab, ISRT or best supportive care. HDT/ASCR or allogeneic HSCT can be considered as consolidation therapy for patients in remission after initial treatment. In a multicenter cohort study (172 patients) conducted by the Canadian blood and bone marrow transplant group, HDT/ASCR was associated with better outcomes than rituximab-based chemotherapy alone for patients aggressive histological transformation. The 5-year OS after transformation was 65%, 61% and 46% respectively for patients treated with HDT/ASCR, rituximab-containing chemotherapy and allogeneic SCT. The corresponding 5-year PFS rates after transformation were 55%, 40% and 46% respectively.

If the patient has had minimal (ISRT alone or one course of single-agent therapy including rituximab) or no prior chemotherapy, anthracycline-based chemotherapy with rituximab, with or without RT is included as a treatment option. Enrollment in clinical trial is recommended for all patients following initial therapy. Patients responding to initial treatment (with a PR or CR) could also be considered for consolidation therapy with HDT/ASCR or allogeneic HSCT. Alternatively, patients with CR to initial therapy may be observed and RIT may be considered for those with PR. Patients with no response or progressive disease following initial therapy should be treated with RIT, palliative therapy or best supportive care.
References

15. Pillai RK, Surti U, Swerdlow SH. Follicular lymphoma-like B-cells of uncertain significance (in situ follicular lymphoma) may infrequently

51. Buske C, Kneba M, Lengfelder E, et al. Front - line combined immuno-chemotherapy (R-CHOP) significantly improves the time to treatment failure and overall survival in elderly patients with advanced stage follicular lymphoma - results of a prospective randomized trial of the German Low-Grade Lymphoma Study Group (GLSG) [abstract] Blood 2006;108:Abstract 482. Available at: http://abstracts.hematologylibrary.org/cgi/content/abstract/108/11/482.

53. Forstpointner R, Dreyling M, Repp R, et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group.

593. Available at: http://abstracts.hematologylibrary.org/cgi/content/abstract/116/21/593.

Marginal Zone Lymphomas

Marginal zone lymphomas (MZLs) are a group of B-cell malignancies thought to originate from B lymphocytes that are normally present in the marginal zone of lymphoid follicles that can be found in the spleen, lymph nodes, and mucosal lymphoid tissues.¹² Three distinct subtypes of MZLs exist, which include extranodal MZL of mucosa-associated lymphoid tissue (MALT lymphoma), nodal MZL, and splenic MZL.³⁻⁵ MZLs comprise about 10% of all non-Hodgkin’s lymphomas (NHLs), with MALT lymphomas being the most common subtype (occurring in 7-8% of NHLs); nodal MZLs occur in <2% and splenic MZLs in <1% of NHLs.⁶ Recent analysis from the SEER database suggested that survival outcomes were more favorable for patients with MALT lymphoma (5-year relative survival 89%) compared with those with splenic MZL (80%) or nodal MZL (76.5%).⁷

The etiology of MZLs has been associated with chronic immune stimulation due to infectious pathogens or inflammation; infection with Helicobacter pylori (H. Pylori) has been implicated in cases of gastric MALT lymphoma, and other pathogens such as Chlamydia psittaci, Campylobacter jejuni, Borrelia burgdorferi, and hepatitis C virus (HCV) have also been implicated in the putative pathogenesis of MZLs.¹⁴ Positive HCV serology has been associated with MZLs (primarily splenic MZL) in about 30% of cases.⁸⁻⁹ In addition, HCV positivity has also been reported in about 35% of patients with non-gastric MALT lymphomas.¹⁰

Since MZL are also characterized by clinical and pathological features that overlap with Waldenström’s Macroglobulinemia/lymphoplasmacytic lymphoma (WM/LPL), it can be difficult to distinguish WM/LPL from MZLs in selected circumstances.¹¹ Recent studies have confirmed that the MYD88 L265P somatic mutation which is widely prevalent in patients with WM/LPL could be useful in differentiating WM/LPL from other B-cell malignancies with overlapping clinical and pathological features.¹²⁻¹⁴ In a retrospective study that analyzed the immunoglobulin heavy chain variable (IGHV) gene sequences and MYD88 mutation status in a series of 123 patients with a diagnosis of MZLs and WM/LPL, MYD88 mutation was found in 67% of patients with WM/LPL (18 of 27) compared to 4% of patients with splenic MZLs (2 out of 53), 7% of patients with MALT lymphomas (2 out of 28) and 0% of patients with nodal MZLs.¹³ IGHV analysis clearly distinguished splenic MZLs and WM/LPL. Splenic MZLs were characterized by overrepresentation of IGHV1-2 gene rearrangements with low or intermediate mutation rates whereas WM/LPL was associated with overrepresentation of IGHV3-23 rearrangements and high mutation rates.¹³ In selected circumstances when plasmacytic differentiation is present, MYD88 mutational analysis should be considered to differentiate MZLs from WM/LPL.

The following sections provide a brief summary of the diagnosis, workup, and treatment recommendations for the three subtypes of MZL: MALT lymphomas (gastric and non-gastric), nodal MZL, and splenic MZL.

MALT Lymphomas

In MALT lymphomas, the gastrointestinal (GI) tract is the most common site of involvement (about 50% of MALT lymphomas) and within the GI tract, the stomach is the most common primary site (80-80% of gastric MALT lymphomas).³⁻¹⁶ Common non-gastric sites of involvement in MALT lymphomas include the orbit (7-12%), lung (8-14%), and skin (9-12%).¹⁵⁻¹⁷ MALT lymphomas tend to be indolent, with similar long-term outcomes reported between gastric and non-gastric subtypes.
In a retrospective analysis of data from patients with MALT lymphomas (N=108), the 10-year overall survival (OS) was not different between patients with gastric MALT lymphoma and non-gastric lymphoma (75% vs. 77%). However, in this analysis, gastric MALT lymphoma was associated with longer time to progression (TTP) from start of treatment than non-gastric presentations (median TTP 8.9 years vs. 4.9 years; \(P=0.01 \)). In a more recent retrospective study in patients with MALT lymphomas (N=98), gastric MALT lymphoma was associated with higher 3-year progression-free survival (PFS) compared with non-gastric cases (95% vs. 82%). In another retrospective study of patients with non-gastric MALT lymphomas (N=180), the 5-year progression-free survival (PFS) and OS was 60% and 90%, respectively. Although disease is localized in most patients with MALT lymphomas, about a third of patients present with disseminated disease; localized disease is more frequently observed with gastric MALT lymphomas than with non-gastric cases. Bone marrow involvement has been reported in about 15 to 20% of MALT lymphomas. In a retrospective analysis of patients with MALT lymphomas (N=158), similar long-term survival was observed between patients with disseminated and localized disease (10-year OS rate 80% in both cases). Recent retrospective data, however, reported decreased PFS outcomes in patients with advanced MALT lymphomas compared with localized disease (3-year PFS rate 73% vs. 94%).

A variety of chromosomal translocations have been implicated in the pathogenesis of MALT lymphomas. \(t(11;18) \) is the most common translocation resulting in the formation of the chimeric fusion gene, \(API2-MALT1 \) and is frequently detected in gastric and pulmonary MALT lymphomas. \(t(1;14) \) results in the overexpression of BCL10 protein and it occurs in 1% to 2% of MALT lymphomas. This translocation has been detected in MALT lymphomas of the stomach, lung and skin. Both \(t(11;18) \) and BCL10 overexpression are associated with locally advanced disease, which is less likely to respond to \(H. Pylori \) eradication with antibiotic therapy. \(t(14;18) \) results in the deregulated expression of \(MALT1 \) gene and has been reported to occur in 15% to 20% of MALT lymphomas. It is most frequently detected in MALT lymphomas of the liver, skin, ocular adnexa and the salivary gland. \(t(3;14) \) results in the upregulation of \(FOXP1 \) gene and is associated with the MALT lymphomas of thyroid, ocular adnexa and skin. The clinical significance of \(t(14;18) \) and \(t(3;14) \) is unknown.

Gastric MALT Lymphoma

Diagnosis

Common clinical features of gastric MALT lymphoma include symptoms of dyspepsia, reflux, abdominal pain, nausea, or weight loss. An endoscopic biopsy is required to establish the diagnosis of gastric MALT lymphoma, as a fine-needle aspiration is not adequate for diagnosis. Endoscopy may reveal erythema, erosions or ulcerations. Adequate hematopathology review of biopsy material and immunophenotyping are needed to establish a diagnosis. The recommended markers for an immunohistochemistry (IHC) panel includes CD20, CD3, CD5, CD10, CD21 or CD23, kappa/lambda, CCND1, BCL2, and BCL6; the recommended markers for flow cytometry analysis include CD19, CD20, CD5, CD23, and CD10. The typical immunophenotype for MALT lymphoma is CD5-, CD10-, CD20+, CD23/-+, CD43 -/+ , cyclin D1-, and BCL2 follicles-.

\(H. pylori \) infection has a critical role in the pathogenesis of gastric MALT lymphomas and its eradication can lead to tumor remission. Therefore, staining for detection of \(H. pylori \) should be performed. However, \(H. Pylori \) infection is not evident in approximately 5-10% of patients with gastric MALT lymphomas and the translocation \(t(11;18) \)
was reported to occur at a high frequency in *H. pylori*-negative patients with gastric MALT lymphomas.\(^{29}\) This chromosomal abnormality has been associated with disseminated disease and resistance to antibiotic treatment in patients with gastric MALT lymphoma.\(^{30,31}\) Molecular analysis by PCR or FISH for the evaluation of t(11;18) is recommended. In some cases, molecular analysis for the detection of antigen receptor gene rearrangements and cytogenetic or FISH evaluation for t(3;14), t(1;14) and t(14;18), may also be useful.

Workup

The initial workup for patients with gastric MALT lymphoma is similar to the workup for other NHLs. A comprehensive physical examination should be performed with attention to non-gastric sites such as the eyes and skin, and performance status should be assessed. Laboratory evaluations should include a complete blood count with differentials and platelets, comprehensive metabolic panel, and measurement of serum LDH levels. Evaluation of bone marrow biopsy, with or without aspirates, may be useful under certain circumstances. Special aspects of the workup for gastric MALT lymphoma include direct endoscopic assessment of the GI tract and additional evaluation of the tumor specimen for the presence of *H. pylori*. If the *H. pylori* infection status is negative based on histopathology evaluation, other non-invasive testing methods may be employed to confirm negative status (i.e., stool antigen test, urea breath test, or blood antibody test) or to establish non-invasive surrogates for upper GI endoscopy. Non-diagnostic atypical lymphoid infiltrates that are *H. pylori* positive should be re-biopsied to confirm or exclude lymphoma prior to treatment of *H. pylori*. Testing for HBV is indicated for patients being considered for treatment with rituximab-containing regimens due to the risk of viral reactivation. Testing for HCV may be useful in selected cases, and given its association with other MZLs and demonstrated importance as a therapeutic target, HCV testing should be performed.

Appropriate imaging studies include CT scan with contrast of diagnostic quality for the chest, abdomen and pelvis. At some NCCN institutions, endoscopic ultrasound (EUS) is used to complement conventional endoscopy at the time of the initial workup and at follow-up. EUS also provides information regarding the depth of involvement in the gastric wall which provides essential information for some of the currently used staging systems; it also helps to distinguish benign lymphoid aggregates from lymphoma associated with *H. pylori* infection.\(^{32}\) In addition, EUS staging is also useful in predicting the efficacy of *H. Pylori* eradication therapy.\(^{33,34}\) EUS with multiple biopsies of anatomic sites is particularly useful for *H. pylori*-positive patients because the likelihood of tumor response to antibiotic therapy is related to depth of tumor invasion. A MUGA scan/echocardiogram should be performed if the patient is being considered for treatment with regimens containing anthracycline or anthracenedione.

Staging can remain a challenge, as it is not standardized for MALT lymphomas; because CT scans may not be optimal for the detection of occult extranodal disease, it is unknown whether staging for MALT lymphomas should follow standard staging systems (e.g., Ann Arbor system) used for nodal-type lymphomas.\(^{1,2}\) Several different staging systems have been used for gastric MALT lymphomas. The widely used Lugano Staging System for GI lymphomas is a modification of the original Ann Arbor staging system.\(^{35}\) In the Lugano Staging, stage I refers to disease confined to the GI tract (single primary or multiple non-contiguous lesions; in Stage I\(_1\), the infiltration is limited to mucosa with or without submucosa involvement, and in Stage I\(_2\), infiltration is present in the muscularis propria, serosa or both. Stage II refers to disease extending into the abdomen from the primary GI site; in Stage
II₁, local (perigastric) lymph nodes are involved, and in Stage II₂, distant lymph nodes are involved. Stage IIE refers to lymphoma penetration of serosa to involve adjacent organs or tissues; if both the lymph nodes and adjacent organs are involved, the above subscripts (1 or 2) for lymph node involvement may be added to the designation. Ann Arbor stage III has been removed, and stage IV in the Lugano Staging refers to disseminated extranodal involvement or concomitant supradiaphragmatic nodal involvement. The TNM staging system corresponds to the staging in gastric cancer and the depth of the lymphoma infiltration is measured by EUS. Involvement of multiple extranodal sites in MALT lymphoma appears to be biologically distinct from multiple extranodal involvements in other lymphomas, and these patients may be managed by treating each site separately with excision or RT or with rituximab. By contrast, cases with disseminated nodal involvement appear to behave more like nodal MZL or like disseminated follicular lymphoma (FL).

Treatment Options Based on Clinical Stage

The treatment approach for gastric MALT lymphomas depends on the *H. pylori* infection status and disease stage. *H. pylori* infection plays a central role in the pathogenesis of some cases of gastric MALT lymphoma. The efficacy of antibiotic therapy for the treatment for gastric MALT lymphoma has been evaluated in a number of retrospective and prospective studies. In these studies, *H. pylori* eradication with antibiotic therapy resulted in lymphoma regression in 70-95% of patients with localized disease. In studies with long-term follow up, the 5-year OS rate with *H. pylori* eradication therapy was 90-95%, with a 5-year disease-free survival (DFS) or event-free survival (EFS) rate of 75-80%. However, there is increasing evidence that late relapses can occur after antibiotic treatment and a long duration of follow-up is appropriate. If there is evidence of t(11;18), t(1;14) or t(14;18), treatment of the *H. pylori* infection with antibiotics may be ineffective; these patients should be considered for alternative therapy, though a trial of antibiotics is still warranted in some patients. *H. pylori* eradication therapy generally comprises a proton pump inhibitor (e.g., omeprazole or other agents such as lansoprazole or rabeprazole) along with a combination of antibiotics including clarithromycin and amoxicillin (or metronidazole for patients allergic to penicillin).

Radiation therapy (RT) has been evaluated in patients with both gastric and non-gastric MALT lymphomas. In a retrospective study of patients who received treatment for localized MALT lymphomas (N=103; lymphoma of the stomach, n=17), the CR rate was 99% in the group of patients treated with involved field RT (IFRT; dose range 30-35 Gy) only (n=85). The 5-year DFS and OS rates were 77% and 98%, respectively. The median follow up for patients treated with RT alone was 4.9 years. Among the patients with gastric MALT lymphoma or primary involvement of the thyroid, none had relapsed at the time of last follow up (failure-free survival rate 100%). Long-term outcomes from this study with a median follow up of 7 years showed that patients with localized MALT lymphoma who received IFRT alone (n=144; dose range 25-35 Gy) had an estimated 10-year relapse-free rate and OS rate of 74% and 89%, respectively. The estimated 10-year cancer-specific OS rate was 98%. Similar to the previous report, outcomes were more favorable for patients with gastric or thyroid MALT lymphoma (n=46); the 10-year relapse-free rate for these patients was 89% compared with 68% for patients with lymphomas in other sites (P=0.004). In another retrospective study in patients with localized gastric MALT lymphoma (N=115), initial therapy with RT alone (n=56) resulted in a CR rate of 96% and a 10-year cancer-specific OS rate of 94%. Several studies suggested that RT may preclude the need for surgical
resection and that surgery does not offer an advantage over other treatment modalities. In the randomized controlled study in patients with localized gastric MALT lymphomas (N=241), the 10-year EFS rates for the groups randomized to treatment with surgery (n=80), RT (n=78), and chemotherapy (n=83) were 52%, 52%, and 87%, respectively (P<0.01). The median follow up in this study was 7.5 years. The 10-year OS rate was not significantly different between the groups treated with surgery, RT or chemotherapy (80% vs. 75% vs. 87%, respectively).

In an analysis of registry data from a German multicenter study in patients with localized gastric lymphomas, outcomes were compared between patients treated with RT alone and those treated with combined surgery and RT. In the subgroup of patients with indolent gastric lymphomas (gastric MALT lymphomas, n=151), extended field RT (total dose 30 Gy followed by 10 Gy boost) alone resulted in an EFS and OS rate of 88% and 93%, respectively, after a median of 42 months of observation. These outcomes were not significantly different from those of patients with gastric MALT lymphomas who received combined modality therapy with surgery and RT. This study had also included patients with gastric MALT lymphomas who experienced treatment failure with \textit{H. pylori} eradication therapy. In a small study that evaluated RT alone (median total dose 30 Gy; range, 28.5-43.5 Gy) in patients with gastric MALT lymphoma without evidence of \textit{H. pylori} or with persistent disease after \textit{H. pylori} eradication therapy (N=17), the CR rate was 100% and the EFS rate was 100% after a median follow up of 27 months. Long-term follow up data from other studies suggest that RT is an effective treatment modality in gastric MALT lymphoma after failure with \textit{H. pylori} eradication therapy. In the subgroup of patients with gastric MALT lymphomas who were unresponsive to \textit{H. pylori} eradication therapy and underwent second-line therapy with RT (n=10) or single-agent chemotherapy with cyclophosphamide (n=12), the CR rate was 80% and 83%, respectively; the estimated 3-year OS (from start of second-line therapy) was 90% and 88%, respectively. In a retrospective analysis of data from patients who received RT following treatment failure with \textit{H. pylori} eradication therapy (N=35), the CR rate was 89% and the 5-year cause-specific OS rate was 93%.

Immunotherapy with the anti-CD20 monoclonal antibody rituximab has also been evaluated in the clinical setting of failure with \textit{H. pylori} eradication therapy. A prospective study evaluated the activity of standard-dose rituximab in patients with gastric MALT lymphoma (N=27) relapsed/refractory to \textit{H. pylori} eradication therapy or not eligible for eradication therapy (i.e., \textit{H. pylori} negative disease). The majority of patients (81%) had stage I or II \textsubscript{1} disease (Lugano Staging System). The ORR with rituximab was 77% with a CR rate of 46%; at a median follow up of 28 months from start of treatment, all patients were alive and 54% of patients were disease free.

Chemotherapy (single agent or combination regimens) has been evaluated in patients with MALT lymphomas. In an early study of single-agent therapy with the alkylating agents chlorambucil or cyclophosphamide (given orally for 12-24 months) in patients with primarily gastric MALT lymphoma (N=24; advanced stage, n=7), CR was achieved in 75% of patients. In a prospective study that evaluated the purine analog cladribine in patients with MALT lymphoma (N=27; gastric lymphoma, n=19), CR was achieved in 84% of patients. Patients with \textit{H. pylori} positive localized gastric disease underwent eradication therapy and were only enrolled if unresponsive to \textit{H. pylori} eradication treatment. All patients with gastric MALT lymphoma treated with cladribine (n=18) achieved a CR whereas only 43% with non-gastric lymphoma achieved a CR. At a median follow up of 80 months, 84% of patients remained alive. DFS at 6.7 years was 68.5% for all patients, and was higher for patients with gastric MALT lymphoma...
compared with those with extra-gastric lymphoma (78.5% vs. 33%). Combination chemotherapy with mitoxantrone, chlorambucil and prednisone (MCP) was retrospectively evaluated in patients with primarily advanced MALT lymphoma (N=15; gastric lymphoma, n=5 only). Among the 5 patients with gastric MALT lymphoma (all were stage I or II), the MCP regimen induced a response in all patients, including a CR in 3 patients who had failed prior H. pylori eradication therapy, and a CR in 1 patient who received concurrent H. pylori eradication therapy. None of the patients have relapsed after a median follow up of 16 months.

Several studies have evaluated chemoimmunotherapy combination regimens that incorporate rituximab in the treatment of MALT lymphomas.

A retrospective study evaluated rituximab combined with cyclophosphamide, doxorubicin (or mitoxantrone), vincristine, and prednisone (R-CHOP/R-CNOP) in patients with relapsed MALT lymphoma (N=26). CR was achieved in 77% of patients. All patients were alive after a median follow up of 19 months, with 22 patients having ongoing remission. A phase II study evaluated the chemoimmunotherapy combination of fludarabine and rituximab in patients with previously untreated MALT lymphoma (N=22; gastric lymphoma, n=12). Among evaluable patients with gastric MALT lymphoma (n=11), the CR rate was 100% and the 2-year PFS rate was 100%. Another phase II study evaluated a different purine analog cladribine in combination with rituximab in patients with MALT lymphoma (N=40; gastric lymphoma, n=21). The ORR was 81% with CR in 58% of patients. After a median follow up of 17 months, 88% of patients were alive. In the subgroup with gastric MALT, the ORR was 86% with a CR in 76% of patients.

In a non-randomized observational study in patients with gastric MALT lymphoma (N=49), chlorambucil combined with rituximab resulted in improved remission rates at week 25 compared with rituximab alone (93% vs. 81%); interestingly, this apparent benefit with the combined regimen over rituximab alone was observed in the subgroup with t(11;18) (remission rate at week 25: 100% vs. 66%) but not among t(11;18)-negative patients (66% vs. 92%).

The international randomized IELSG-19 trial evaluated the combination of chlorambucil with rituximab in comparison to chlorambucil alone in patients with MALT lymphoma not previously treated with systemic anticancer therapy. Eligible patients included those who were not responding to or not suitable for local therapy. Final data analysis was conducted in patients treated with chlorambucil alone (n=113) and chlorambucil combined with rituximab (n=114). The combination regimen resulted in higher CR rates (78% vs. 65%) and improved 5-year EFS (68% vs. 50%; P=0.002), while the ORR (90% vs. 87%), 5-year PFS (71% vs. 62%) and OS rate (89% in both arms) were not significantly different.

A multicenter phase II trial is investigating the combination of bendamustine and rituximab in patients with previously untreated MALT lymphoma (N=60; gastric lymphoma, n=20). After 3 cycles of combination therapy, the ORR was 100% and CR rate was 76%; gastric lymphoma was associated with a higher CR rate compared with non-gastric disease (90% vs. 64%). The CR rate after completion of treatment was 98%, with most patients (85%) requiring only 4 or fewer cycles of therapy to achieve a CR. After a median follow up of 16 months, all patients remain relapse free and 1 patient died due to neurologic causes.
The proteasome inhibitor bortezomib was evaluated in a phase II study in patients with relapsed/refractory MALT lymphoma (N=32; gastric lymphoma, n=14; median 2 prior therapies). Among evaluable patients (n=29), the ORR was 48% with a CR rate of 31%. After a median follow up of 24 months, 5 patients died, including 2 deaths due to disease progression.

Although chemotherapy regimens may be active in patients with MALT lymphomas, long-term data from a larger group of patients are needed to evaluate their role in the management of localized disease. The international randomized LY03 trial of chlorambucil versus observation following \textit{H. pylori} eradication in patients with localized gastric MALT lymphoma (N=110) showed no difference between study arms with regards to recurrence/progression rate, PFS, or OS outcomes. Therefore, in the absence of data showing benefits with chemotherapy, localized gastric MALT lymphoma should be treated with \textit{H. pylori} eradication therapy or RT, as appropriate. Chemotherapy regimens may be considered for patients with relapsed/refractory disease following RT or for those with advanced, systemic disease.

NCCN Recommendations for Stage I-II

Antibiotic therapy in combination with a proton pump inhibitor to block gastric acid secretion is recommended for \textit{H. Pylori}-positive. Patients who are \textit{H. Pylori}-positive with t(11;18) could also be treated with antibiotic therapy to eradicate \textit{H. Pylori} infection. However, since t(11;18) is a predictor for lack of response to antibiotic therapy, these patients should be considered for alternative therapy for lymphoma as described for patients who are \textit{H. pylori}-negative. ISRT is the preferred treatment option for patients with \textit{H. pylori} negative disease (negative status confirmed by both histology and blood antibody test). Rituximab is an option for patients with contraindications to RT.

Patients treated with antibiotic therapy for \textit{H. pylori} eradication should be restaged with endoscopy and biopsy after 3 months following therapy. Patients with stage IE2 or stage IIIE disease with involvement of submucosa or regional lymph nodes are much less likely to respond to antibiotic therapy. In symptomatic patients after antibiotic therapy, restaging can be done earlier than 3 months and RT may be considered earlier. Patients with responsive disease (\textit{H. pylori} negative and lymphoma negative) can be observed. Patients who are \textit{H. pylori} negative with persistent or recurrent lymphoma are treated with RT, if they are symptomatic. Asymptomatic patients can be observed for another 3 months; alternatively, locoregional RT can be considered as early as 3 months after observation but observation can be prolonged for up to 18 months (category 2B). If the patient initially had clinical stage I2 or stage IIIE disease, early RT should be considered if the lymphoma does not regress with antibiotic therapy. Patients with persistent \textit{H. pylori} and regressing or stable lymphoma are treated with second-line antibiotics. Lastly, patients who are \textit{H. pylori} positive with progressive or symptomatic lymphoma should be treated with RT and second-line antibiotics.

Patients treated with initial RT should be restaged with endoscopy and biopsy after 3-6 months following RT. Patients with responsive disease (\textit{H. pylori} negative and lymphoma negative) can be observed. Antibiotic treatment can be considered for patients with persistent \textit{H. pylori} and regressing lymphoma. However, patients with persistent lymphoma (regardless of presence of \textit{H. pylori}) following RT should be managed according to recommendations for FL contained in these NCCN Guidelines for NHL.

Following observation or additional therapy with antibiotic therapy or RT (as discussed above), patients are again evaluated with endoscopy and biopsy after 3 months. The biopsy should rule out
evidence of large-cell transformation. Any area of DLBCL should be treated according to recommendations for DLBCL in the NCCN Guidelines for NHL. For patients with a CR, clinical follow-up with physical examination and laboratory assessment should be performed every 3-6 months for 5 years and then yearly thereafter (or as clinically indicated). The optimal interval for follow-up endoscopy and imaging is not known. At the present time, follow-up endoscopy and imaging at NCCN institutions are performed as clinically indicated based on symptoms. Patients with no response to second-line RT or recurrence following an initial CR should be treated with systemic therapy according to the guidelines for FL. Locoregional RT is indicated for patients with no response to second-line antibiotic therapy.

NCCN Recommendations for Stage III or IV
In patients with advanced stage disease (which is uncommon), treatment is similar to that described for patients with advanced stage FL. As with FL, asymptomatic patients without indications for treatment are monitored without therapy. The decision to treat is guided by end-organ dysfunction or the presence of symptoms (such as GI bleeding, early satiety), bulky disease at presentation, steady progression of disease, or patient preference. For patients with indications for treatment, enrollment in clinical trial is recommended given the incurability of advanced disease with conventional regimens. In the absence of suitable clinical trials, treatment may include chemoimmunotherapy or locoregional RT (30 Gy). Surgical resection is generally limited to specific clinical situations such as life-threatening hemorrhage. Although disease control is excellent with total gastrectomy, the long-term morbidity has precluded routine surgical resection. If there is evidence of recurrence (by endoscopy) following initial induction therapy, patients should be managed according to the FL guidelines.

Non-gastric MALT Lymphomas
MALT lymphomas can arise from a large number of non-gastric sites such as the bowel (small and large), breast, lung, ocular adnexa, ovary, prostate, parotid, salivary glands and other head and neck regions. The most common sites of presentation include the parotid and salivary glands (18-26%), skin (12-26%), conjunctiva/orbit (7-14%), head and neck (11%), lung (8-9%), thyroid (6%) and breast (2-3%). Infectious pathogens (e.g., *Chlamydia psittaci, Campylobacter jejuni*) have been associated with MALT lymphomas of non-gastric sites but testing for these pathogens is not required for disease workup or management.

Diagnosis
Adequate hematopathology review of biopsy materials and immunophenotyping are needed to establish a diagnosis. The recommended markers for an IHC panel include CD20, CD3, CD5, CD10, CD21 or CD23, kappa/lambda, CCND1, and BCL2; the recommended markers for flow cytometry analysis include CD19, CD20, CD5, CD23, and CD10. The typical immunophenotype for MALT lymphoma is CD5-, CD10-, CD20+, CD23-/+ , CD43 -/+ , cyclin D1-, BCL2-. Molecular analysis to detect antigen receptor gene rearrangement or t(11;18) may be useful in certain cases. In addition, cytogenetics or FISH for t(11;18) t(3;14), t(11;14) and t(14;18) may also be considered under certain circumstances.

Workup
The workup for non-gastric MALT lymphoma is similar to the workup for other NHLs. A comprehensive physical examination should be performed and performance status should be assessed. Laboratory evaluations should include a complete blood count with differentials and platelets, comprehensive metabolic panel, and measurement of serum LDH levels. Evaluation of bone marrow biopsy, with or without aspirates, may be useful for patients with multifocal disease. In addition,
endoscopy with multiple biopsies of anatomical sites may be useful in selected cases. Appropriate imaging studies include CT scan (with contrast of diagnostic quality) of the chest, abdomen and pelvis. A MUGA scan/echocardiogram should be performed if the patient is being considered for treatment with regimens containing anthracycline or anthracenedione. Testing for hepatitis B virus is indicated for patients being considered for treatment with rituximab-containing regimens due to the risk of viral reactivation with chemoimmunotherapy. Testing for HCV may be useful in selected cases.

Treatment Options

As discussed above in the section for ‘Gastric MALT Lymphomas’, RT alone has been shown to be an effective treatment strategy for both localized gastric and non-gastric MALT lymphomas. In the long-term follow up from a retrospective study in patients with localized MALT lymphomas treated with RT with or without chemotherapy (N=167; non-gastric lymphomas, n=142), the group who received IFRT alone (n=144; dose range 25-35 Gy; 25 Gy for orbit) had an estimated 10-year relapse-free rate and OS rate of 74% and 89%, respectively.\(^{45}\) The 10-year relapse-free rates for patients with primary involvement of the thyroid (n=21), salivary gland (n=28), and orbital adnexa (n=71) were 95%, 68%, and 67%, respectively.\(^ {45}\)

Other treatment modalities such as chemotherapy (alone or with RT) or surgery (alone or with RT and/or chemotherapy) have been evaluated. In a retrospective study in patients with non-gastric MALT lymphomas (N=180; Ann Arbor stage IV in 27%), patients were treated with chemotherapy (n=78; with or without RT), RT alone (n=41), or surgery (n=68; with or without RT and/or chemotherapy).\(^ {17}\) More than half of patients with early-stage disease were treated with RT (55%; with or without other therapies), including RT alone in 30%; surgery or systemic chemotherapy (with or without other therapies, in both cases) was employed in 42% (surgery alone in 17%) and 31%, respectively. Among patients with advanced disease (stage IV), the large majority were treated with systemic chemotherapy (75.5%; with or without other therapies); RT alone was used in only 4% of these patients. Surgery (with or without other therapies) was employed in 26.5% of patients with advanced disease, including 10% who received surgery alone.\(^ {17}\) Among evaluable patients (n=174), the ORR to treatment was 93% with a CR rate of 77%. Among patients who received chemotherapy, the ORR and CR rates were 92% and 72%, respectively. After a median follow up of 3.4 years, the estimated 5-year PFS and OS rates were 60% and 90%, respectively. The 5-year PFS and OS rates were both 100% for the subgroup of patients with primary involvement in the conjunctiva (n=18) and thyroid (n=10). In patients with primary disease in the orbit (n=13), however, the corresponding outcomes were 23% and 80%, respectively. For patients with primary disease in the salivary gland (n=46), the 5-year PFS and OS rates were 67% and 97%; for the patients with primary disease in the skin (n=22), the corresponding rates were 53% and 100%, respectively.\(^ {17}\)

In another retrospective study in patients with non-gastric MALT lymphomas (N=208; Ann Arbor stage III-IV in 44%), patients were treated with chemotherapy alone (45%; about half received single-agent alkylating agent while other received combination therapy), surgery (21%), or RT (19%).\(^ {64}\) The ORR to treatment was 90% with a CR rate of 73%. The ORR among patients treated with chemotherapy, RT, or surgery were 65%, 76%, and 90%, respectively. After a median follow up of 2.7 years, the median EFS rate was 2.4 years; the estimated 5-year EFS and OS rates were 37% and 83%, respectively.\(^ {64}\) Among patients with primary disease in the skin (n=55), the 5-year EFS and OS rates were 44% and 100%, respectively. Among patients with primary disease in the salivary glands (n=38), the 5-year EFS and OS rates...
were 30% and 86%, respectively; for patients with disease in the orbit/conjunctiva (n=30), the corresponding rates were 49% and 100%, respectively. As would be expected, 5-year OS rates were significantly higher among patients with Ann Arbor stage I-II disease compared with those with stage III-IV disease (94% vs. 69%; \(P=0.001 \)). On multivariate analysis, bone marrow involvement was the only significant independent predictor of inferior outcomes for both EFS and OS.\(^{64} \)

Rituximab either alone or in combination with chemotherapy has also been evaluated in patients with previously untreated or relapsed non-gastric MALT lymphoma. The IELSG evaluated the clinical activity of single agent rituximab in a phase II study in patients with untreated as well as relapsed MALT lymphomas (35 patients; 15 patients with gastric MALT lymphoma and 20 patients with non-gastric MALT lymphoma).\(^{65} \) Among patients with non-gastric MALT lymphoma, treatment with rituximab resulted in an ORR of 80% (55% CR and 25% PR). For the entire study population, the ORR was significantly higher in the chemotherapy-naive patients than in previously treated patients (87% and 45% respectively; \(P = .03 \)).

A phase II study evaluated the chemoimmunotherapy combination of fludarabine and rituximab in patients with previously untreated MALT lymphoma (N=22).\(^{56} \) In the primary non-gastric MALT subgroup (n=10), the ORR was 100% with a CR rate of 80%; PFS at 2 years was 89% in this subgroup. Another phase II study evaluated a different purine analog cladribine in combination with rituximab in patients with MALT lymphoma (N=40).\(^{57} \) In the subgroup with primary non-gastric MALT (n=19), the ORR was 74% with a CR in 37% of patients. The CR rate was lower than that reported for the subgroup with primary gastric MALT (76%).\(^{57} \)

In the international randomized IELSG-19 trial that compared chlorambucil alone with the combination of chlorambucil and rituximab in patients with MALT lymphoma not previously treated with systemic anticancer therapy, CR rates, EFS, PFS, and OS rates were not significantly different between patients with primary gastric and non-gastric lymphoma in either treatment arm.\(^{59} \) In the multicenter phase II trial that investigated the combination of bendamustine with rituximab in patients with previously untreated patients with MALT lymphoma (N=60), the CR rate was 64% in the subgroup of patients with primary non-gastric lymphoma (n=35).\(^{60} \)

NCCN Recommendations

ISRT (24-30 Gy) is the preferred treatment for patients with stage I-II disease. RT dose is site dependent, with lower doses usually reserved for orbital involvement. Rituximab is included as an option for selected patients. RT or observation is appropriate for patients with extranodal involvement. Based on anecdotal responses to antibiotics in ocular and cutaneous MZLs, some physicians may give an empiric course of doxycycline prior to initiating other therapy. Observation may be considered for patients whose diagnostic biopsy was excisional or in whom RT or systemic treatment could result in significant morbidity. For patients with stage I-II disease, surgical excision for adequate diagnosis may be appropriate treatment for certain sites of disease (e.g., lung, thyroid, colon, small intestine, and breast). If there is no residual disease following surgery, patients can be observed; for patients with positive margins post-surgery, locoregional RT should be considered.

Clinical follow-up (including repeat diagnostic tests and imaging based on the site of disease and as clinically indicated) should be conducted every 3-6 months for 5 years and then annually thereafter (or as clinically indicated). Local recurrence following primary treatment may be treated with RT or managed according to recommendations for
advanced-stage FL. Systemic recurrence should be managed according to the recommendations for advanced FL, as should patients presenting with stage III-IV disease (extranodal disease and multiple nodal sites) at diagnosis. MALT lymphomas coexistent with large-cell lymphoma should be managed according to the recommendations for DLBCL.

Nodal Marginal Zone Lymphoma

In patients with nodal MZL, peripheral lymphadenopathy is present in nearly all cases (>95%); thoracic or abdominal lymph nodes may also be involved in about 50% of cases. In addition, involvement of MZL in the bone marrow and peripheral blood may be seen in about 30-40% and 10% of cases, respectively. Although advanced-stage disease is observed in about two-thirds of newly diagnosed nodal MZL, most tumors are non-bulky and B symptoms are present in only about 15% of cases. The disease course of nodal MZL tends to be indolent, but long-term outcomes appear less favorable compared with MALT lymphomas. In a retrospective analysis of data from patients with MZL, the OS rate was lower in the subgroup of patients with nodal MZL (n=14) compared with those with MALT lymphoma (n=62) (56% vs. 81%); the 5-year failure-free survival rate was also lower among patients with nodal MZL (28% vs. 65%). In a separate retrospective study in patients with non-MALT-type MZL (N=124), the median TTP (from start of treatment) and median OS was 1.3 years and 5.5 years, respectively, among the subgroup of patients with nodal MZL (n=37).

Diagnosis

Adequate hematopathology review of biopsy materials and immunophenotyping are needed to establish a diagnosis. Nodal MZL is rare and occurs most commonly as disseminated disease from extranodal MALT lymphoma. The recommended markers for an IHC panel include CD20, CD3, CD5, CD10, CD21 or CD23, kappa/lambda, CCND1, and BCL2; the recommended markers for flow cytometry include CD19, CD20, CD5, CD23, and CD10. The typical immunophenotype for nodal MZLs is CD5-, CD10-, CD20+, CD23-/+ , CD43 -/+ , cyclin D1-, BCL2-. Pediatric nodal MZL should be considered with located disease in young patients. Molecular analysis to detect antigen receptor gene rearrangement or t (11; 18) (by PCR) may be useful in certain cases. In addition, cytogenetics or FISH for t(11;18) t(3;14), t(11;14) , t(14;18), del(13q) and del(7q) may also be considered under certain circumstances.

Workup

The workup for nodal MZLs is similar to the workup for other NHL subtypes. A comprehensive physical examination should be performed and performance status should be assessed. Laboratory evaluations should include a complete blood count with differentials and platelets, comprehensive metabolic panel, and measurement of serum LDH levels. Evaluation of bone marrow biopsy with aspirates should be performed to document clinical stage I-II disease. Bone marrow biopsy may be deferred until treatment is indicated, however. Appropriate imaging studies include CT scan (with contrast of diagnostic quality) of the chest, abdomen and pelvis. Nodal MZL occurs primarily in the lymph nodes, although involvements of additional extranodal sites are common. The diagnosis of nodal MZL requires careful evaluation to rule out extranodal sites of primary disease and must be distinguished from nodal FL, MCL, lymphoplasmacytic lymphoma and CLL, all of which are more common. A MUGA scan/echocardiogram should be performed if the patient is being considered for treatment with regimens containing anthracycline or anthracenedione. Testing for hepatitis B virus is indicated for patients being considered for treatment with rituximab-containing regimens due to the risk of viral reactivation with chemoimmunotherapy. Testing for hepatitis C virus may be useful in select cases.
NCCN Guidelines Version 2.2017
B-cell Lymphomas

NCCN Recommendations
The panel recommends that patients with nodal MZL be managed according to the recommendations for FL in the NCCN Guidelines for NHL.

Splenic Marginal Zone Lymphoma
Splenic MZL is characterized by the presence of splenomegaly in all cases, which may become symptomatic when massive or when associated with cytopenias.\(^2,5,66\) Peripheral lymph nodes are generally not involved while splenic hilar lymph nodes are often involved\(^2,5\); involvement of thoracic or abdominal lymph nodes may also be seen in about a third of patients with splenic MZL.\(^8,66\) In addition, bone marrow involvement is present in the majority of patients (about 85%) and involvement of peripheral blood occurs in 30-50% of patients.\(^2,8,66\) Although most patients with splenic MZL present with advanced-stage disease, the disease course is generally indolent. Among the subgroup of patients with splenic MZL (n=59) in a retrospective study in patients with non-MALT-type MZL, the median TTP (from start of treatment) and median OS was 6.9 years and 9.1 years, respectively.\(^66\) Similarly, in a retrospective review of data from patients with splenic MZL (N=81), the median OS was 10.5 years.\(^67\)

Diagnosis
Adequate hematopathology review of biopsy materials and immunophenotyping are needed to establish a diagnosis. The diagnosis of splenic MZL requires bone marrow involvement with or without peripheral blood involvement by small lymphoid cells with immunoglobulin (Ig) light chain restriction that lack characteristic features of other small B-cell neoplasms (CD5, CD10, cyclin D1).\(^58\) The recommended markers for an IHC panel include CD20, CD3, CD5, CD10, CD21 or CD23, CD43, kappa/lambda, IgD, CCND1, BCL2, and annexin A1; the recommended markers for flow cytometry analysis include CD19, CD20, CD5, CD23, CD10, CD43, and CD103. The typical immunophenotype for splenic MZL is CD5-, CD10-, CD20+, CD23-/+, CD43-, cyclin D1-, BCL2 follicles-, annexinA1-, CD103-, and with expression of both IgM and IgD. This lymphoma is distinguished from CLL by the absence of CD5 expression, strong CD20 expression and variable CD23 expression, and from hairy cell leukemia (HCL) by the absence of CD103 expression.

Splenic MZL is most definitively diagnosed at splenectomy, since the immunophenotype is nonspecific and morphologic features on the bone marrow may not be diagnostic. However in a patient with splenomegaly (small or no M component) and a characteristic intra sinusoidal lymphocytic infiltration of the bone marrow, the diagnosis can strongly be suggested on bone marrow biopsy, if the immunophenotype is consistent. Plasmacytoid differentiation with cytoplasmic Ig detectable on paraffin sections may occur. In such cases, the differential diagnosis may include LPL. MYD88 and BRAF mutation status can be useful in selected cases for differentiating splenic MZLs from WM/LPL and HCL respectively.\(^13,69,70\) Conventional and real-time allele-specific polymerase chain reaction (AS-PCR) for MYD88 (L265P) has been reported to be an useful test to differentiate WM from non-IgM LPL and other B-cell lymphomas with overlapping clinical and pathological features.\(^71\)

Workup
The initial workup for splenic MZL is similar to the other indolent lymphomas. A comprehensive physical examination should be performed and performance status should be assessed. Laboratory evaluations should include a complete blood count with differentials and platelets, comprehensive metabolic panel, and measurement of serum LDH levels. Serum protein electrophoresis (SPEP) and/or measurement of quantitative immunoglobulin levels should be performed. If elevated immunoglobulins or monoclonal immunoglobulin is detected, further
characterization by immunofixation of blood may be useful. Evaluation of bone marrow biopsy with or without aspirates should be performed.

Appropriate imaging studies include CT scan (with contrast of diagnostic quality) of the chest, abdomen and pelvis. A MUGA scan/echocardiogram should be performed if the patient is considered for treatment with regimens containing anthracycline or anthracenedione. Testing for HCV is an essential part of initial workup. Hepatitis C has been associated with and implicated in the pathogenesis of splenic MZL and should be evaluated for all patients suspected of having this diagnosis. Testing for HBV is indicated for patients being considered for treatment with rituximab-containing regimens due to the risk of viral reactivation. Other useful evaluations may include cryoglobulin testing for detection of abnormal proteins frequently associated with hepatitis C, and direct Coombs test for evaluation of autoimmune hemolytic anemia.

Treatment Options

As previously mentioned, HCV infection may be associated with some cases of MZLs. In a retrospective study in patients with MZLs, positive HCV serology was detected in 35% of the group of patients with splenic MZL. Antiviral therapy with interferon (IFN)-alfa, with or without ribavirin, has been shown to induce virologic and hematologic responses in patients with HCV-positive MZLs, including in those with splenic disease. A recent retrospective study evaluated the activity of antiviral therapy with IFN or pegylated-IFN, with or without ribavirin (84% received ribavirin), in a large series of patients with HCV-positive indolent B-cell NHLs (N=94; splenic MZL histology, n=30 [32%]). Among the patients who received antiviral treatment as first-line therapy (n=76; splenic MZL, n=24), the ORR and CR rate was 77% and 47%, respectively, and a sustained virologic response was observed in 78% of patients. The median duration of response was 23 months after a median follow up of 3.3 years. The 5-year PFS and OS rate was 78% and 94%, respectively.

For patients with splenic MZL with negative HCV serology, various treatment modalities including splenectomy, single-agent chemotherapy, combination chemotherapy, immunotherapy with rituximab, and/or chemoimmunotherapy (rituximab combined with chemotherapy) have been evaluated. About 20% to 25% of patients may be observed without initiating treatment at diagnosis, in the absence of disease symptoms or cytopenias. Splenectomy alone can result in an ORR of 80% to 90%, with a median OS of 93 months reported in retrospective series. In a retrospective study, splenectomy with adjuvant chemotherapy (e.g., CHOP-like regimens, alkylating agents, purine analogs) resulted in CR rates of about 50%, with median OS of 107.5 months (about 9 years). In retrospective studies, splenectomy with or without chemotherapy have demonstrated favorable outcomes with a median OS exceeding 10 years and a 10-year OS rate of about 75%. In a retrospective series of patients with splenic MZL (N=30) treated with splenectomy (followed by alkylating agent-based or anthracycline-based chemotherapy in the majority of patients) or chemotherapy alone with CHOP-like regimens and/or antiviral therapy for HCV positivity, the ORR and CR rates were 93% and 48%, respectively. The median EFS was 3.3 years and the estimated 3-year OS rate was 75%.

Treatment of splenic MZL with purine analog agents (e.g., pentostatin, cladribine) alone resulted in CR rates of about 20%. In a small phase II prospective study in patients with splenic MZL (N=16; previously treated, n=13), single-agent therapy with pentostatin induced an ORR of 68% with a CR in 23% of patients; after a median follow up of 35 months, the median PFS and OS was 18 months and 40 months, respectively. In a retrospective analysis of patients with splenic MZL...
In another retrospective study in patients with splenic MZL (N=70), the patients treated with chemotherapy alone (n=11; purine analog regimens, n=10) had a CR rate of 18%, and a 3-year FFS rate of 45%; the 3-year OS rate was 55%.

The anti-CD20 monoclonal antibody rituximab has also been evaluated as both monotherapy and in combination with chemotherapy in patients with splenic MZL. In retrospective series, rituximab alone (with or without maintenance rituximab) has shown high response rates (ORR 90% to 100%; CR/CRu rates 40% to 85%) with durable remissions. In a retrospective series of patients with splenic MZL who received rituximab alone (n=26), the ORR and CR/CRu rates were 88% and 42%, respectively. The 3-year FFS and OS rates were 86% and 95%, respectively. Combination therapy with rituximab and chemotherapy appears to provide benefits over purine analog therapy alone. In a small subgroup of patients who received rituximab combined with chemotherapy (n=6), the CR/CRu rate was 33% and both the 3-year FFS and OS rates were 100%. A retrospective study compared outcomes of patients with splenic MZL treated with cladribine alone (n=12) versus cladribine with rituximab (n=38). The combination regimen of cladribine and rituximab resulted in significantly higher CR rate (62.5% vs. 21%; \(P=0.004 \)) and 4-year PFS rate (83% vs. 52%; \(P=0.04 \)) compared with cladribine alone. After a median follow up of 45 months, the 4-year PFS rate for all patients was 67% and the estimated 6-year OS rate was 89%. In a recent retrospective study that assessed treatment with rituximab in patients with splenic MZL (N=43), rituximab alone or in combination resulted in an ORR of 100% with a CR in 79% of patients. This CR rate compared favorably to the 30% CR observed in patients treated with chemotherapy alone (n=10).

Moreover, single-agent rituximab resulted in similar CR rates compared with rituximab-based combination (90% vs. 79%), and was associated with less toxicity. The 3-year DFS was more favorable with rituximab-containing therapy (79%) compared with splenectomy alone (29%) or chemotherapy alone (25%). The 3-year OS with rituximab was 98%.

NCCN Recommendations

Asymptomatic patients with no splenomegaly or progressive cytopenia can be observed until indications for treatment develop. Patients presenting with splenomegaly should be treated depending on their HCV serology status. Hepatology evaluation is recommended for patients with HCV positivity. For patients without contradictions for treatment of hepatitis, appropriate treatment with antiviral therapy should be initiated. In addition, patients requiring treatment for symptomatic splenomegaly can be further managed with splenectomy or rituximab therapy. Patients with contraindications should be managed as described below for patients with HCV-negative disease.

Patients who are HCV-negative can be observed if they are asymptomatic. Patients who are symptomatic (cytopenias or symptoms of splenomegaly, weight loss, early satiety or abdominal pain) should be treated with splenectomy or rituximab. Pneumococcal and meningococcal vaccination should be given at least 2 weeks before splenectomy. Patients should be monitored on a regular basis following treatment. Clinical follow up (including repeat diagnostic tests and imaging studies, as clinically indicated) should be performed every 3-6 months for 5 years and then annually or as clinically indicated thereafter. Patients with evidence of disease progression should be managed according to the recommendations for advanced-stage FL in the NCCN Guidelines.
References

43. Wotherspoon AC, Doglioni C, Diss TC, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid

60. Salar A, Domingo-Domenech E, Panizo C, et al. Final Results of a Multicenter Phase II Trial with Bendamustine and Rituximab As First Line Treatment for Patients with MALT Lymphoma (MALT-2008-01) [abstract]. Blood 2012;120:Abstract 3691. Available at: http://abstracts.hematologylibrary.org/cgi/content/abstract/120/21/3691.

Mantle Cell Lymphoma

Diagnosis

Mantle cell lymphoma (MCL) comprises about 6% of all newly diagnosed cases of NHL. MCL can be readily distinguished from other small lymphocytic lymphomas due to the widespread availability of appropriate diagnostic reagents. The diagnosis can be established by histological examination in combination with immunohistochemistry (IHC) with a profile consisting of CD5+, CD10-/+, CD20+, CD23-/+ , CD43+, and cyclin D1+. Some cases of MCL may be CD5- or CD23+. MCL is characterized by the reciprocal chromosomal translocation t(11;14), resulting in the overexpression of cyclin D1 and the diagnosis of MCL generally requires the expression of cyclin D1. However, cyclin D1-negative MCL cases with otherwise typical immunophenotype can be observed, though rare (<5% of cases). Recent gene expression profiling data suggest that cyclin D1 expression may not be required for the molecular signature of MCL; in these rare cases of MCL negative for cyclin D1 and t(11;14), over-expression of cyclin D2 or cyclin D3 may be observed. IHC for cyclin D2 or cyclin D3 is not helpful in establishing the diagnosis of cyclin D1-negative MCL as these proteins are also expressed in other B-cell malignancies. A recent study of cyclin D1-negative MCL showed rearrangements involving the CCND2 gene in 55% of cases, which was associated with high expression of cyclin D2 mRNA. Gene expression and miRNA profiling showed that the genomic signatures of cyclin D1-negative MCL cases were similar to those of cyclin D1-positive cases. Nuclear overexpression of the transcription factor SOX11 is observed in nearly all cases of MCL, regardless of cyclin D1 expression level, and may potentially aid in differentiating cyclin D1-negative MCL cases from other B-cell lymphomas.

In-Situ Involvement of Mantle Cell Lymphoma-like Cells of Unknown Significance (Mantle Cell Lymphoma “In Situ”)

The presence of MCL-like B-cells in the mantle zones of morphologically reactive lymph nodes (“MCL in situ”) has been described in several case reports (including in patients with lymphoid hyperplasia). Cases of “MCL in situ” have been characterized by preservation of the lymph node architecture and presence of cyclin D1-positive B-cells restricted to the mantle zone with minimal expansion of the mantle zone (and with only minimal or no spread of cyclin D1-positive cells in the interfollicular area). More recently, an unusual case of “MCL in situ” was reported that showed a scattering of cyclin D1-positive cells in the germinal centers (but not the mantle zones) of a lymph node specimen retrospectively evaluated several years prior to the diagnosis of symptomatic MCL.
The occurrence of "MCL in situ" in studies of reactive lymph nodes was very rare. In an analysis of a consecutive series of unselected surgical samples of reactive lymph nodes from patients without a history of lymphoma (n=131; 1292 samples), no cases of "MCL in situ" were identified. Development of overt MCL in patients found to have "MCL in situ" has been reported, although this appears to be very uncommon. The significance or potential for malignancy of "MCL in situ" in patients without known MCL remains uncertain. These cases appear to have a very indolent course with long-term survival even without treatment intervention. It is therefore important to distinguish cases of "MCL in situ" from cases of overt MCL with a mantle zone pattern. In patients with the former in whom overt MCL can be excluded based on a thorough evaluation (e.g., biopsy of additional suspicious nodes, physical examination, peripheral blood flow cytometry, CT scan of neck, chest, abdomen, and pelvis) close follow-up may still be warranted. Similar to "follicular lymphoma in situ", the WHO classification recommends that a diagnosis of MCL not be made in such cases.

Workup

The workup for MCL is similar to the workup for many indolent lymphomas and certain aggressive lymphomas. The initial workup for newly diagnosed MCL should include a thorough physical examination with attention to node-bearing areas, and evaluation of performance status and constitutional symptoms. Laboratory assessments should include standard blood work including CBC with differential and a comprehensive metabolic panel, in addition to measurements of serum lactate dehydrogenase (LDH). Patients with high tumor burden and elevated LDH should be assessed for spontaneous tumor lysis syndrome, including measurements of uric acid level. Measurement of serum beta-2-microglobulin levels may also be useful in some circumstances. HBV testing is recommended due to increased risks of viral reactivation when immunotherapy regimens are being considered for treatment. MCL is a systemic disease with frequent involvement of the bone marrow, gastrointestinal (GI) tract and may also present with a leukemic phase. For this reason, both the peripheral blood and bone marrow must be carefully evaluated for the presence of malignant cells. Adequate trephine biopsy should be obtained for initial staging evaluation, with or without bone marrow aspiration. Chest, abdominal, and pelvic CT scans are routinely performed. PET-CT scan and CT scan of the neck may be helpful in selected cases. In patients with the blastic variant or for patients presenting with CNS symptoms, a lumbar puncture should be performed to evaluate the cerebral spinal fluid for potential disease involvement.

GI involvement has been reported in 15% to 30% of patients with MCL. In two prospective studies, the frequency of GI tract involvement in patients with MCL was higher than that reported in the literature. Salar et al reported upper or lower GI tract involvement in 92% of patients at diagnosis. In the study by Romaguera et al., MCL was histologically present in the lower and upper GI tract in 88% and 43% of patients, respectively. In this report, 26% of patients presented with GI symptoms at the time of diagnosis. Despite the high frequency of GI tract involvement (which was primarily observed at the microscopic level), the use of endoscopy with biopsies led to changes in clinical management in only 4% of patients. The NCCN Guidelines panel does not recommend endoscopy or colonoscopy as part of routine initial workup, but suggests that it may be useful in certain circumstances. However, endoscopic or colonoscopic evaluation of the GI tract is necessary for confirmation of stage I-II disease and for response assessment to initial therapy.
Treatment Options based on Clinical Stage

Generally, MCL is thought to possess the worst characteristics of both indolent and aggressive NHL subtypes owing to the incurability of disease with conventional chemotherapy and a more aggressive disease course.\(^{27}\)

Stage I-II

Few patients present with localized MCL and the available published literature on management is retrospective and anecdotal. In a retrospective analysis of patients with limited bulk, early-stage (stage IA or IIA) MCL (n=26), inclusion of RT with or without chemotherapy was associated with significantly improved progression-free survival (PFS) at 5 years (68% vs. 11%; \(P = .002\)) and a trend towards improved overall survival (OS).\(^{28}\)

Stage II (bulky) and Stage III-IV

Several regimens have shown significant activity in newly diagnosed patients with MCL, but none of these regimens are curative in patients with advanced disease.

In a database analysis from a single-center cohort (n=111), Martin et al. reported that treatment with regimens including R-CHOP or R-CVP could yield survival outcomes similar to that achieved with more intensive approaches.\(^{29}\) The median OS from diagnosis was 85 months, and the 5-year OS rate was 66%. Among patients with available data on treatment regimens (n=75), the majority (70%) had received CHOP-like therapy with or without rituximab, with only 7% having received more intensive first-line therapies (R-hyper-CVAD and/or high-dose therapy with autologous stem cell rescue [HDT/ASCR]).\(^{29}\)

However, a more recently published analysis from the NCCN Oncology Outcomes Database suggested that median PFS remained 3-4 years despite the use of aggressive regimens in patients with MCL (n=167).\(^{30}\) This analysis reported superior PFS outcomes with R-hyper-CVAD alone or with rituximab-containing regimens (e.g., R-CHOP) followed by HDT/ASCT, compared with R-CHOP alone, in the first-line setting for younger patients (<65 years of age) with MCL.\(^{30}\)

Aggressive First-Line Therapy

Rituximab used in combination with hyper-CVAD (fractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone; alternating with high-dose methotrexate and cytarabine) [R-hyper-CVAD] has resulted in favorable PFS and OS outcomes.\(^{31-34}\)

In a phase II study in previously untreated patients with MCL (n=97), R-hyper-CVAD produced 3-year failure-free survival (FFS) and OS rates of 64% and 82%, respectively, with a median follow-up time of 40 months.\(^{31}\) After 10 years of follow-up, the median OS had not been reached and the median time to failure (TTF) was 4.6 years for all patients. Among patients 65 years or younger, the median OS had not been reached and the median TTF was 5.9 years. In the multivariate analysis pre-treatment serum levels of beta-2-microglobulin, IPI score and MIPI score were predictive of both OS and TTF.\(^{32}\) FFS and OS rates were 43% and 60%, respectively; among patients 65 years or younger, the corresponding survival rates were 52% and 68%, respectively.

In the Italian study (60 evaluable patients), R-hyper-CVAD resulted in an overall response rate of 83% with a CR rate of 72%. The 5-year PFS and OS rates were 61% and 73%, respectively.\(^{33}\) However, this regimen was associated with substantial toxicity.

In the SWOG 0213 study, R-hyper-CVAD induced CR/CRu in 58% of previously untreated patients (age <70 years) with MCL (n=49).\(^{34}\) With a
median follow-up of 4.8 years, the median PFS and OS was 4.8 years (5.5 years for those ≤ 65 years) and 6.8 years respectively. The 2-year PFS and OS rates were 63% and 76%, respectively.

Less Aggressive First-Line Therapy
In the earlier studies, the addition of rituximab to CHOP chemotherapy was associated with high response rates but did not translate to prolonged PFS or OS.\(^{35,36}\) A phase III randomized trial in the German Low Grade Lymphoma study group evaluated R-CHOP versus CHOP alone in previously untreated patients (age ≤ 65 years) with advanced stage MCL (n=122).\(^{36}\) In this study, R-CHOP was significantly superior to CHOP in terms of ORR (94% vs. 75%), CR rate (34% vs 7%) and median time to treatment failure (21 months vs. 14 months). However, no differences were observed between treatment arms for PFS or OS outcomes.\(^{36}\)

Other non-aggressive regimens have also been evaluated in clinical trials. The combination of bendamustine with rituximab (BR regimen) was investigated in a randomized phase III study of the StiL (Study Group Indolent Lymphomas), which compared BR versus R-CHOP as first-line therapy in patients with advanced follicular, indolent, and mantle cell lymphomas (514 evaluable patients; MCL histology comprised 18% of patients).\(^{37}\) The ORR was similar in both arms (93% with BR vs. 91% with R-CHOP), although the CR rate was significantly higher in the BR arm (40% vs. 30%; \(P = .021\)). With a median follow-up time of 45 months, the BR arm was associated with significantly longer median PFS (primary endpoint) compared with R-CHOP (69.5 months vs. 31.2 months; HR=0.58, 95% CI 0.44–0.74; \(P < .0001\)); however, OS outcomes were not significantly different between treatment arms. Among the subgroup of patients with MCL histology, median PFS was also significantly higher with BR compared with R-CHOP (35 months vs. 22 months; HR=0.49, 95% CI 0.28–0.79; \(P = .0044\)).\(^{37}\)

The combination of bendamustine and rituximab with the addition of cytarabine was evaluated in a phase II study in older patients with MCL (age ≥ 65 years; not eligible for intensive regimens or HDT/ASCR).\(^{38}\) Among enrolled patients (n=40; median age 70 years), 50% were previously untreated, 93% had stage III/IV disease and 49% had high-risk MIPI scores. Patients with relapsed/refractory disease (n=20) had all previously received rituximab-containing therapies.\(^{38}\) Among previously untreated patients, the ORR was 100% and the 2-year PFS rate was 95%. Among relapsed/refractory patients, the ORR was 70% and the 2-year PFS was 70%. The most common grade 3 or 4 toxicities included transient thrombocytopenia (87%) and febrile neutropenia (12%).\(^{38}\)

Cladribine, alone or in combination with rituximab, has shown activity in patients with previously untreated MCL.\(^{39-41}\) In trials conducted by the North Central Cancer Treatment group, the ORR and median PFS for single agent cladribine were 81% (42% CR) and 14 months,
respectively, for previously untreated patients (n=26); the combination of cladribine and rituximab as initial therapy (n=29) resulted in an ORR of 66% (52% CR) and median PFS of 12 months. In a small trial in patients with previously untreated and pretreated MCL (n=12), cladribine alone induced an ORR of 58% (25% CR) with a median time to progression of 19 months. In a recent retrospective study in patients with previously untreated MCL (n=31), cladribine combined with rituximab yielded an ORR of 87% (61% CR/CRu) with a median PFS and OS of 37.5 months and 85 months, respectively. It should be noted that in this study, the majority of responding patients had received post-induction maintenance therapy with rituximab.

Bortezomib is a proteasome inhibitor with activity in patients with relapsed or refractory MCL and is currently approved for this indication. A phase III randomized study evaluated the safety and efficacy of bortezomib in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) vs. R-CHOP in patients with newly diagnosed MCL who are not candidates for HDT/ASCR. In this study, 487 patients were randomized to R-CHOP (n = 244) or VR-CAP (n = 243). The majority of patients had stage IV disease (74%) and 54% of patients had an IPI ≥3. At a median follow-up of 40 months, median progression free survival with VR-CAP was 24.7 months compared to 14.4 months for R-CHOP, which was statistically significant (P < .001). VR-CAP was also associated with improvements in median time to progression (30.5 vs 16.1 months; P < .001) and CR (CR + CRu) rate (48% vs. 41%). The median duration of response (CR + CRu) was 42 months and 18 months, respectively. The 4-year OS rate was higher with VR-CAP (64% vs. 54% for R-CHOP), but the benefit was not significant. The incidences of grade ≥3 adverse events, although slightly higher with VR-CAP (93% compared to 84% with R-CHOP), were manageable. Based on the results of this study, the FDA approved the use of bortezomib (in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone) for the initial treatment of patients with MCL. The NCCN Guidelines have included VR-CAP as an option for induction therapy for patients with newly diagnosed MCL (stage II-IV).

First-Line Consolidation Therapy
HDT/ASCR as first-line consolidation has demonstrated promising outcomes in a number of studies. In a prospective study of sequential frontline CHOP/DHAP followed by HDT/ASCR in patients with MCL (n=28; n=23 proceeded to transplant), the 3-year event-free survival (EFS) and OS rates were 83% and 90%, respectively. Median OS was not reached after a median follow up of almost 48 months. In a randomized trial conducted by the European MCL Network, patients (age ≤65 years) with advanced stage MCL (n=122) in remission after CHOP-like chemotherapy were randomized to HDT/ASCR or maintenance with interferon alfa. In this study, HDT/ASCR was associated with a significantly longer median PFS compared with interferon alfa maintenance (39 months vs. 17 months; P=0.011) The 3-year OS rates were 83% and 77%, respectively, and were not significantly different between consolidation arms.

In a study conducted by the MD Anderson Cancer Center, HDT/ASCR in patients with MCL (n=33) in first remission following treatment with hyper-CVAD resulted in 5-year disease-free survival and OS rates of 42% and 77%, respectively. In particular, the subgroup of patients with low serum beta-2 microglobulin levels appeared to benefit most, with a 5-year OS rate of 100% (compared with 22% for patients with elevated beta-2 microglobulin). In an analysis of long-term outcomes from patients with MCL treated at the MD Anderson Cancer Center (including...
the 33 patients reported in the earlier study above), the subgroup of patients treated primarily with hyper-CVAD (with or without rituximab) followed by HDT/ASCR in first remission (n=50) showed a median PFS of 42 months and a median OS of 93 months.51

In a small prospective study that evaluated R-hyper-CVAD followed by HDT/ASCR in patients with previously untreated MCL (n=13; 12 patients proceeded to transplant), the 3-year EFS and OS rate was 92% for both endpoints.50 These results with R-hyper-CVAD appear favorable relative to induction with R-CHOP.

In a phase II study that evaluated R-CHOP induction followed by HDT/ASCR in patients with previously untreated MCL (n=87; 61 patients proceeded to transplant), the 4-year failure-free survival and OS rates were 36% and 66%, respectively.52

In another study, patients with MCL treated with hyper-CVAD or CHOP (with or without rituximab, in either regimen) followed by HDT/ASCR in first remission (n=36) had 3-year PFS and OS rates of 63% and 93%, respectively.53 Induction with hyper-CVAD resulted in a higher 3-year PFS rate compared with CHOP (81% vs. 44%), although the difference was not statistically significant. The 3-year OS rate was similar between induction regimens (94% vs. 92%, respectively).53 Disease status at transplant was the most significant factor affecting survival following HDT/ASCR.53,54 Patients in first remission (CR or PR) at the time of transplant had improved survival outcomes compared with those with relapsed or refractory disease. As mentioned above, among patients transplanted in first remission, hyper-CVAD (with or without rituximab) induction was associated with an improved PFS outcome compared with CHOP (with or without rituximab) in non-randomized studies.53

Several different induction regimens incorporating rituximab in combination with dose intensified anthracycline-based16,55,56 or cladribine-based chemotherapy57-59 followed by HDT/ASCR have shown promising efficacy in relatively young newly diagnosed patients with MCL.

In the Nordic MCL trial, induction therapy with rituximab and dose intensified CHOP (maxi-CHOP) alternating with high-dose cytarabine resulted in an ORR and CR rate of 96% and 54%, respectively, in previously untreated patients (age ≤65 years) with MCL (n=160).55 Responding patients were eligible to proceed with HDT/ASCR. The 6-year PFS and OS rates were 66% and 70%, respectively, with no relapses occurring after a median follow up of approximately 4 years (at the time of the initial report).55 Further follow up from this study with a median observation time of 6.5 years showed median EFS of 7.4 years; median OS exceeded 10 years.60 Late relapses were reported in 6 patients, who experienced disease progression more than 5 years after the end of therapy. In the multivariate analysis from this study, the international MCL Prognostic Index (MIPI) and ki-67 expression level were the only independent predictors of survival outcomes.60 However, in this trial, patients were monitored by disease-specific primers for molecular relapse (MRD), and those who relapsed received rituximab as re-induction but were not considered to have relapsed unless there was morphologic evidence of relapse.

The Cancer and Leukemia Group B (CALGB 59909 trial) reported that rituximab in combination with methotrexate and augmented CHOP followed by HDT/ASCR was safe and effective in patients with newly diagnosed MCL (n=78).56 At a median follow-up of 4.7 years, the 5-year PFS and OS rates were 56% and 64%, respectively.56
In newly diagnosed patients with MCL (n=88 evaluable), sequential chemotherapy (CHOP followed by ICE) with or without rituximab followed by consolidation with HDT/ASCR was associated with a superior PFS compared with RIT followed by CHOP (4-year PFS rate: 65% vs. 26%); the 4-year OS rate was 84% for both treatment groups. This study also demonstrated the prognostic significance of the proliferation index on PFS outcomes. Moreover, among the subgroup of patients with a proliferation index <30%, HDT/ASCR resulted in superior PFS compared with RIT-CHOP (5-year PFS rate: 82% vs. 24%).

In the phase III randomized Intergroup trial conducted by the European MCL Network, sequential treatment with 3 cycles each of R-CHOP and R-DHAP followed by HDT/ASCR (using high-dose cytarabine containing myeloablative regimen) induced higher remission rates compared with 6 cycles of R-CHOP followed by HDT/ASCR (using myeloablative radiochemotherapy) in patients (age ≤ 65 years) with advanced stage MCL (391 evaluable patients). The clinical CR rate was 39% and 26%, respectively; median time to treatment failure (TTF) was not reached in the R-CHOP/R-DHAP arm compared with 49 months in the R-CHOP arm, after a median follow up of 27 months. The rate of molecular remission (MRD-negative status in peripheral blood or bone marrow) was significantly higher in the R-CHOP/R-DHAP arm compared with R-CHOP (73% vs. 32%). Achievement of molecular remission in the bone marrow after induction was associated with significantly improved 2-year PFS outcomes in the combined treatment arms. Final analysis from this trial (455 evaluable patients) confirmed that R-CHOP/R-DHAP induction was associated with higher CR rate (36% vs. 25%) and CR/CRu rate (54% vs. 40%) compared with R-CHOP. After HDT/ASCR, the CR rates were similar between treatment arms (61% vs. 63%), although R-CHOP/R-DHAP was associated with longer remission duration (84 months vs. 49 months; \(P=.0001 \)). After a median follow up of 51 months, median TTF was significantly longer in the R-CHOP/R-DHAP arm compared with the R-CHOP/R-DHAP arm (46 months; \(P=.038 \)). Moreover, median OS was longer in the R-CHOP/R-DHAP arm (not reached vs. 82 months; \(P=.045 \)). The investigators concluded that an induction regimen containing high-dose cytarabine in addition to R-CHOP resulted in improved outcomes, and suggested that these regimens followed by HDT/ASCR may define a new standard for the treatment of younger patients (<65 years of age) with MCL.

In a phase II multicenter trial of the French cooperative group GELA, induction with 3 cycles each of R-CHOP and R-DHAP resulted in an ORR of 95% with CR in 57% of patients (age ≤65 years) with previously untreated MCL (n=60). Patients went on to receive HDT/ASCR on this study. After a median follow up of 67 months, the median EFS was 83 months and median OS has not been reached; the 5-year OS was 75%.

Post-induction Maintenance Therapy

Maintenance therapy with rituximab may provide extended disease control for patients who are not physically fit or not eligible to undergo aggressive first-line treatment regimens and HDT/ASCR.

In a small phase II pilot study in previously untreated patients (n=22), a less intensive, modified R-hyper-CVAD regimen (without methotrexate or cytarabine, and with modifications to dose schedule of vincristine and steroids) followed by rituximab maintenance for 5 years resulted in a median PFS of 37 months with median OS not reached; the use of rituximab maintenance appeared to prolong PFS with acceptable toxicity.
In a subsequent study that incorporated the proteasome inhibitor bortezomib into the modified R-hyper-CVAD (VcR-CVAD regimen) followed by rituximab maintenance in patients with previously untreated MCL (n=30), the CR/CRu rate was 77%. After a median follow up of 42 months, median PFS and OS had not been reached. The 3-year PFS rate was 63% and OS rate was 86%. This VcR-CVAD regimen with maintenance rituximab was further evaluated in a larger phase II ECOG trial (E1405) in patients with previously untreated MCL (n=75). The ORR in this trial was 95% with CR in 68% of patients. Following induction therapy, patients proceeded with maintenance rituximab (n=44) or consolidation with stem cell transplantation (SCT) off protocol (n=22). After a median follow up of 4.5 years, the 3-year PFS and OS rates were 72% and 88% respectively. No differences in PFS or OS were observed between patients who went on to receive rituximab maintenance or SCT.

The European MCL Network recently conducted a phase III randomized trial in older patients (age >60 years not eligible for HDT/ASCR) with previously untreated MCL (n=560; 485 patients evaluable for response) to evaluate induction with R-FC (rituximab, fludarabine and cyclophosphamide) versus R-CHOP, with a second randomization to maintenance with rituximab every 2 months (until relapse; thus, there was no set duration of maintenance rituximab) versus interferon alfa (given until progression in both arms). Response after induction therapy with R-CHOP and R-FC was similar (CR rate: 34% vs. 40%; CR/CRu rate: 49% vs. 53%; ORR: 86% vs. 78%, respectively), but more patients progressed during R-FC than with R-CHOP (14% vs. 5%). Median duration of response was similar between R-FC and R-CHOP arms (37 months vs. 36 months). OS (from start of induction) was significantly longer with R-CHOP compared with R-FC (Median OS: 67 months vs. 40 months; 4-year OS: 62% vs. 47%; P=0.005). Grade 3-4 hematologic toxicities occurred more frequently with R-FC induction. Among the patients who responded to induction and underwent second randomization (n=316), median remission duration was significantly improved with rituximab maintenance compared with interferon alfa (75 months vs. 27 months; P <.001). After a median follow up of 42 months, OS outcomes were not significantly different between the two maintenance arms (4-year OS: 79% with rituximab vs. 67% with interferon alfa). However, in the subgroup of patients treated with R-CHOP induction (n=184), median OS (from end of induction) was significantly longer with rituximab maintenance compared with interferon alfa (not reached vs. 64 months; 4-year OS: 87% vs. 63%; P=0.005). Moreover, grade 3-4 hematologic toxicities occurred more frequently with interferon alfa. Rituximab was associated with more frequent grade 1-2 infections. This study suggests that for patients who are not candidates for HDT/ASCR as part of first-line therapy, R-CHOP induction followed by rituximab maintenance may offer the best chance to prolong remission duration. Given the positive outcomes reported in this study (with median duration of response exceeding 6 years with rituximab maintenance and a 4-year OS rate of 87% in patients treated with R-CHOP and rituximab maintenance), it is unknown whether first-line consolidation with HDT/ASCR provides an advantage over rituximab maintenance in patients of any age. At the present time, no data are available from randomized studies that would allow direct comparison of outcomes with these two different consolidation approaches.

Relapsed or Refractory Disease

Second-line Therapy
The treatment of patients with relapsed/refractory MCL remains a major challenge, as CR rates are generally low (<30%) and response durations are limited with available regimens.
Bortezomib is a proteasome inhibitor with activity in patients with relapsed or refractory MCL,42-44 and is currently approved for the treatment of patients with MCL that has relapsed after at least one prior therapy. FDA approval of this agent was based on data from the pivotal phase II PINNACLE trial of single-agent bortezomib in patients with relapsed/refractory MCL (n=155; 141 evaluable patients).42 In this trial, bortezomib induced an ORR of 33% (CR in 8%), with a median duration of response of 9 months.42 Median time to progression (in all patients) was 6 months. Longer follow-up data also confirmed these initial findings; after a median follow-up time of 26 months, the median OS in all patients was 23.5 months and was 35 months in responding patients.66 Small studies have reported promising activity of bortezomib combined with rituximab in heavily pretreated patients with relapsed/refractory MCL.67,68 In addition, bortezomib in combination with R-hyper-CVAD, with (as discussed above) or without rituximab maintenance, is under investigation in previously untreated patients with MCL.62,69

Cladribine has shown activity as a single agent in patients with relapsed MCL.39,40 In the trial conducted by the North Central Cancer Treatment group, the ORR and median PFS for patients with recurrent MCL (n=25) were 46% (21% CR) and 5 months, respectively.39

Fludarabine-based combination regimens, with or without rituximab, have also shown activity in patients with relapsed or refractory MCL.70-72 Results from a small pilot trial in patients with newly diagnosed and relapsed MCL (20 evaluable patients) showed that the combination of fludarabine, mitoxantrone and rituximab (FMR) induced a CR rate of 90%, with a median duration of CR of 17 months.71 In patients with MCL (n=66) treated as part of a prospective randomized phase III study of the GLSG, the addition of rituximab to the combination of fludarabine, cyclophosphamide and mitoxantrone (FCM) [R-FCM regimen], produced higher ORR (58% vs. 46%) and CR rates (29% vs. 0%) compared with FCM alone.72,73 This trial included a second randomization to rituximab maintenance versus observation in patients who responded to therapy. In the subgroup of patients with MCL who received R-FCM induction (n=47), rituximab maintenance resulted in a higher proportion of patients in remission beyond 2 years compared with observation only (45% vs. 9%; \(P=0.049\)); the median duration of remission was similar between maintenance and observation arms (14 months vs. 12 months).73

Fludarabine combined with rituximab (FR) was evaluated as part of a phase III randomized trial from StiL that compared FR versus BR in patients with relapsed/refractory follicular or indolent lymphoma or MCL (208 evaluable patients; MCL histology in about 20%).74 Following a protocol amendment, maintenance therapy with rituximab was also added in both treatment arms (n=40 only). The FR regimen resulted in an ORR and CR rate of 52.5% and 16%, respectively, which was significantly inferior to response rates with BR (ORR 83.5%; CR rate 38.5%). The median PFS with FR was 11 months, which was also significantly shorter compared with a median of 30 months observed with the BR regimen (\(P < .0001\)).74 However, no difference in median OS was observed between treatment arms after a median observation time of 33 months.

Bendamustine, as a single agent or in combination with rituximab (BR), has shown promising results with acceptable toxicity in patients with heavily pretreated patients with relapsed or refractory indolent or mantle cell histologies as well as aggressive lymphomas.74,75 In a phase II multicenter study, BR resulted in an ORR of 92% (41% CR) in patients with relapsed or refractory indolent lymphomas and MCL (n=67).75 The median duration of response and PFS was 21 months and 23 months, respectively. Outcomes were similar for patients with indolent or mantle
cell histologies. For the subgroup of patients with MCL histology (n=12), the ORR was 92% (42% CR; 17% CRu) and the median duration of response was 19 months. As discussed above, the phase III randomized trial from StiL showed superiority of the BR regimen compared with FR in patients with relapsed/refractory follicular or indolent lymphoma or MCL (208 evaluable patients; MCL histology in about 20%), with an ORR of 83.5% (38.5% CR) and median PFS of 30 months. In a small multicenter phase II study that evaluated the combination of bendamustine and rituximab with bortezomib in patients with relapsed/refractory indolent lymphomas or MCL (29 evaluable patients; MCL histology, n=7), the ORR was 83% (52% CR) and the 2-year PFS rate was 47%. The ORR among the small subgroup of patients with MCL was 71%. Based on these results, this combination regimen is currently being evaluated in randomized trials conducted by the US cooperative groups.

Lenalidomide is an immunomodulating agent that has been evaluated as a single agent in patients with relapsed or refractory aggressive NHL in two phase II studies (NHL-002 and NHL-003). In the subset analysis of patients with MCL (n=15) in the NHL-002 study, the ORR was 53% (20% CR). The median duration of response and PFS were 14 months and 6 months, respectively. The subset analysis of patients with MCL (n=54) enrolled in the larger confirmatory study (NHL-003) also showed similar results with an ORR of 43% (17% CR). An updated analysis from the NHL-003 study showed that in the relapsed/refractory MCL subgroup (n=57), the ORR with single-agent lenalidomide was 35% (12% CR/CRu) by independent central review at a median follow up of 12 months. The ORR by investigator review was 44% (21% CR/CRu). By central review, the median duration of response was 16 months and the median PFS was approximately 9 months. Additional phase II studies are specifically evaluating the role of single-agent lenalidomide in patients with relapsed/refractory MCL. In a phase II study in patients with relapsed/refractory MCL (n=26), lenalidomide (including low-dose lenalidomide maintenance in responding patients) resulted in an ORR of 31% with a median response duration of 22 months. The median PFS was only 4 months. However, among the patients who received maintenance lenalidomide (n=11), the median PFS was 15 months.

In a larger multicenter phase II study (MCL-001) in patients who relapsed after or were refractory to bortezomib (n=134; median 4 prior therapies), lenalidomide as single agent resulted in an ORR of 28% (7.5% CR/CRu) by independent central review. All patients were previously treated with rituximab-containing regimens, and all had relapsed or were refractory to bortezomib. The median duration of response was 16.6 months. The median PFS and OS were 4 months and 19 months respectively. In the larger studies, the most common grade 3 or 4 toxicities with lenalidomide were myelosuppression (neutropenia in 43%-46% and thrombocytopenia in 28%-30%). Lenalidomide combined with rituximab is also under clinical evaluation. In a phase I/II study of a combination regimen with lenalidomide and rituximab in patients with relapsed/refractory MCL (36 evaluable patients), the ORR was 53% (31% CR). The median duration of response was 18 months, and the median PFS (for all patients in the phase II portion) was 14 months. In an updated analysis of this study (n=52), the ORR was 57% (36% CR) among patients treated in the phase II portion (n=44); median duration of response was 19 months. The median PFS was 11 months and median OS was 24 months. The most common grade 3 or 4 toxicities included neutropenia (66%) and thrombocytopenia (23%).

Ibrutinib is a small-molecule inhibitor of Bruton’s tyrosine kinase (BTK) involved in the B-cell signalling pathway and has shown promising activity in patients with B-cell malignancies.
dose-escalation study in patients with relapsed and/or refractory B-cell malignancies (n=56; follicular lymphoma, 29%; CLL/SLL, 29%; MCL, 16%), ibrutinib given in a continuous or intermittent dosing schedule (until progression) resulted in an ORR of 60% (CR in 16%) among evaluable patients (n=50). The median PFS was approximately 14 months. Among the subgroup of patients with MCL (n=9), response was observed in 7 patients, including a CR in 3 patients. Treatment with ibrutinib was well tolerated even with prolonged dosing (> 6 months), with no dose-limiting toxicities and no significant myelosuppression; grade 3 or 4 adverse events were uncommon. The fixed dose of 560 mg daily given continuously was well tolerated and resulted in full occupancy of the BTK target; thus, the recommended phase II dose was established as 560 mg daily. The results of a multicenter phase II study evaluating ibrutinib (560 mg continuous daily dosing until progression) in patients with relapsed or refractory MCL (n=115; median 3 prior therapies, range 1–5), including in patients previously treated with bortezomib have been published. The large majority of patients had received prior rituximab-containing regimens (89%) and 45% were refractory to last therapy before study enrollment. Most patients had advanced disease (72%) and 49% had high-risk disease based on MIPI scores. Among 111 evaluable patients, the estimated median follow up was 15 months at the time of analysis. The ORR was 68% with a CR in 21% of patients. The median duration of response was 17.5 months. Among the subgroup of patients who were previously treated with bortezomib (n=48), the ORR was 67% with a CR in 23%. The response rates appeared to increase with longer duration of therapy. The estimated median PFS for all treated patients was approximately 14 months. Median OS has not yet been reached; the estimated OS rate at 18 months was 58%. The most common grade 3 or greater adverse events included neutropenia (16%), thrombocytopenia (11%), anemia (10%), pneumonia (6%), diarrhea (6%), fatigue (5%) and dyspnea (5%). This study showed durable responses with single-agent ibrutinib with a favorable toxicity profile. The use of ibrutinib has been known to result in an initial transient lymphocytosis which resolves by a median of 8 weeks after initiation of ibrutinib. Ibrutinib treatment has also been associated with grade ≥ 3 bleeding events in 5% of patients. The benefit and risk of ibrutinib should be considered in patients requiring anti-platelet or anticoagulant therapies. See “Special Considerations for the use of BCR Inhibitors” in the guidelines for monitoring and management of adverse reactions associated with ibrutinib.

Based on these data, ibrutinib (560 mg orally, once daily) was recently approved by the FDA for the treatment of patients with MCL who received at least one prior therapy.

Second-Line Consolidation Therapy
In patients with relapsed/refractory indolent NHL, allogeneic stem cell transplant (SCT) has resulted in decreased rates of disease recurrence compared with HDT/ASCR, but at the cost of a higher treatment-related mortality (TRM) rate. In an effort to reduce the TRM associated with allogeneic SCT, the use of reduced-intensity conditioning (RIC) regimens has been explored. In a study that evaluated allogeneic SCT using conventional myeloablative conditioning or RIC in patients with relapsed/refractory NHL (n=25), RIC (fludarabine-based regimens) was associated with a decreased TRM rate (17% vs. 54%) and increased event-free survival (50% vs. 23%) and OS (67% vs. 23%) rates at 1 year compared with myeloablative regimens. A multicenter retrospective study of RIC allogeneic SCT in patients with relapsed/refractory low-grade NHL (n=73) also reported promising long-term outcomes with RIC (primarily using fludarabine-based regimens); in this study, the 3-year EFS and OS
rates were 51% and 56%, respectively.91 Although the 3-year relapse rate appeared low at 10%, the TRM rate was high, with a 3-year cumulative incidence of 40%.91 Allogeneic SCT using RIC has been evaluated as a consolidation strategy for patients in remission following treatment for relapsed/refractory MCL.51,92,93 In patients with relapsed MCL treated with RIC allogeneic SCT (n=18), the 3-year PFS rate and estimated 3-year OS rate was 82% and 85.5%, respectively; the majority of patients in this study (89%) had chemosensitive disease.92 In another study, RIC allogeneic SCT was evaluated in patients with relapsed/refractory MCL (n=33); 42% of these patients had failed prior HDT/ASCR.93 The 2-year disease-free survival and OS rates were 60% and 65%, respectively. The 2-year relapse rate was 9%; moreover, with a median follow up of nearly 25 months, none of the patients transplanted in a CR (n=13) experienced disease relapse.93 The 2-year TRM rate in this study was 24%. In an analysis of patients with MCL treated with SCT at the MD Anderson Cancer Center, the subgroup of patients with relapsed/refractory disease treated with RIC allogeneic SCT (n=35) had favorable long-term outcomes.51 Most of these patients (62%) were transplanted in remission (31% in second remission). The analysis reported a median PFS of 60 months, and 6-year PFS and OS rates of 46% and 53%, respectively. The TRM rates at 3 months and 1 year were 0% and 9%, respectively.51

NCCN Recommendations for Stage I-II

Recommendations for First-line Therapy and Follow-up

Outside of a clinical trial, the NCCN Guidelines panel recommends RT (30-36 Gy) alone or combination chemoimmunotherapy with or without RT. These recommendations are based on treatment principles in the absence of more definitive clinical data.

For patients with a CR, clinical follow up should be conducted every 3-6 months for the first 5 years, and then on a yearly basis or as clinically indicated. If the patient received initial treatment with chemoimmunotherapy with or without RT, and relapses after an initial CR (or the initial response is a PR or disease progression on first-line therapy), the patient should be treated with second-line therapy regimens recommended for stage II (bulky) or stage III-IV disease (see sections below). If the patient received initial treatment with RT alone and relapses after achieving a CR (or the initial response is a PR or disease progression with RT alone), then the patient can be treated with first-line induction therapy (comprising chemoimmunotherapy regimens) recommended for stage II (bulky) and stage III-IV disease.

NCCN Recommendations for Stage II (bulky) and Stage III-IV

Recommendations for First-line Therapy and Follow-up

In the absence of standard management for patients with advanced disease, patients should be referred for participation in prospective clinical trials. Similar to the management of patients with indolent lymphomas, patients with MCL often require highly individualized courses of care. The majority of patients with MCL will have advanced stage disease and require systemic therapy. However, in highly selected patients with asymptomatic disease, close observation with deferred therapy is a reasonable option, especially for those with good performance status and lower risk scores on standard IPI.94

The standard treatment regimen for MCL is not yet established. There are no prospective randomized studies comparing the various aggressive induction regimens for MCL, although some randomized data exist for less intensive first-line treatment options (as previously discussed). Given the role of rituximab in the treatment of CD20-positive NHL, it is reasonable to consider rituximab-containing regimens for management of advanced MCL. Based on the available data, the NCCN Guideline panel has included the following regimens for initial induction therapy:
Aggressive Therapy

All regimens listed below (except for hyper-CVAD + rituximab) included first-line consolidation with HDT/ASCR in published reports.

- Hyper-CVAD + rituximab32-34
- Dose-intensified CHOP [maxi-CHOP] alternating with rituximab + high-dose cytarabine (NORDIC regimen)55
- Rituximab and methotrexate with augmented CHOP (CALGB regimen)56
- Sequential R-CHOP and R-ICE16
- Alternating R-CHOP and R-DHAP57

Less aggressive therapy:

- Bendamustine + rituximab17
- Bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP)45
- Cladribine + rituximab39,41
- CHOP + rituximab (R-CHOP)29,36
- Modified Hyper-CVAD with rituximab maintenance in patients older than 65 years61

For patients with a CR to first-line therapy, participation in a clinical trial or HDT/ASCR is recommended for eligible patients (see section below). For patients with a CR, clinical follow up should be conducted every 3-6 months for the first 5 years, and then on a yearly basis or as clinically indicated. For patients with only a PR to first-line therapy, additional therapy (see second-line therapy regimens below) may be considered in an effort to improve the quality of a response. If the patient achieves a CR (or improved PR) with additional therapy, consolidation with HDT/ASCR may be considered for eligible patients, as discussed above. For patients who relapse after achieving a remission to first-line therapy, or for patients who experience disease progression during initial therapy, participation in clinical trials is preferred. In the absence of suitable clinical trials, second-line treatment options can be considered.

Recommendations for First-line Consolidation Therapy

The panel recommends consolidation with HDT/ASCR for eligible patients in remission following first-line therapy, although no studies have compared maintenance rituximab with HDT/ASCR for patients in first CR. In general, patients will receive an aggressive induction regimen prior to consolidation; however, less aggressive induction therapy followed by consolidation with HDT/ASCR or maintenance rituximab may also result in good long-term outcome.

For patients who are not candidates for HDT/ASCR, and who are in remission after first-line therapy with R-CHOP, maintenance treatment with rituximab (every 8 weeks until disease progression) is recommended (category 1)63

Recommendations for Second-line Therapy

The optimal approach to relapsed or refractory disease remains to be defined. Patients with relapsed disease following CR to induction therapy or those who obtain only a PR to induction therapy or those with progressive disease are appropriate candidates for clinical trials involving HDT/ASCR or allogeneic HSCT, immunotherapy with nonmyeloablative stem cell rescue or treatment with new agents. Based on the recent FDA approval, the panel has included ibrutinib as an option for second-line therapy for patients with relapsed or refractory disease.86 Alternatively, in the absence of an appropriate clinical trial, these patients can be treated with second-line chemotherapy regimens (with or without rituximab) recommended for patients with DLBCL or any of the following regimens:
- Bendamustine ± rituximab
- Bortezomib ± rituximab
- Cladribine ± rituximab
- FC (fludarabine, cyclophosphamide) ± rituximab
- FCMR (fludarabine, cyclophosphamide, mitoxantrone, rituximab)
- FMR (fludarabine, mitoxantrone, rituximab)
- Lenalidomide ± rituximab
- PCR (pentostatin, cyclophosphamide, rituximab)
- PEPC (prednisone, etoposide, procarbazine, cyclophosphamide) ± rituximab

Allogeneic transplantation (with myeloablative or reduced intensity conditioning) is an appropriate option for patients with relapsed or refractory disease that is in remission following second-line therapy.
References

41. Spurgeon SE, Pindyck T, Okada C, et al. Cladribine plus rituximab is an effective therapy for newly diagnosed mantle cell lymphoma. Leuk

90. Bertz H, Illerhaus G, Veelken H, Finke J. Allogeneic hematopoietic stem-cell transplantation for patients with relapsed or refractory lymphomas: comparison of high-dose conventional conditioning versus...

Diffuse Large B-Cell Lymphoma

Diffuse large B-cell lymphomas (DLBCL) are the most common lymphoid neoplasms in adults, accounting for approximately 32.5% of NHLs diagnosed annually.\(^1\) DLBCL NOS, follicular lymphoma (grade 3 only), DLBCL coexistent with a low-grade lymphoma of any kind (e.g., follicular lymphoma, gastric MALT or non-gastric MALT lymphoma), intravascular large B-cell lymphoma, DLBCL associated with chronic inflammation, ALK-positive DLBCL, EBV-positive DLBCL in older patients and T-cell/histiocyte rich large B-cell lymphoma are also managed according to the DLBCL guidelines.

Gene expression profiling (GEP) has revealed significant heterogeneity within DLBCL.\(^2\) However, incorporation of this information into treatment algorithms awaits further investigation. Immunohistochemical markers such as CD10, BCL6, and IRF4/MUM1 have been reported to recapitulate the GEP in classifying DLBCL into 2 different subtypes: germinal center B-cell (GCB) subtype (CD10+, or BCL6+, IRF4/MUM1-) and non-GCB subtype (CD10-, IRF4/MUM1+ or BCL6-, IRF4/MUM1-).\(^3\) See “Use of Immunophenotyping/Genetic Testing in the Differential Diagnosis of Mature B-Cell and NK/T-Cell Neoplasms (NHODG-A, Page 6)” in the guidelines. Immunohistochemical algorithms including GCET1, FOXP1, and LMO2 in addition to CD10, BCL6 and IRF4/MUM1 have also been proposed.\(^4,5\) MYC gene rearrangements have been reported in 5-8% of patients with DLBCL, and often correlate with GCB phenotype.\(^6,8\) GCB subtype is associated with an improved outcome compared to non-GCB subtype in patients treated with R-CHOP. Ongoing randomized clinical trials are exploring whether the addition of novel targeted agents to R-CHOP will selectively improve the outcome in patients with non-GCB DLBCL.\(^9,10\) Presently, the upfront standard of care remains the same for both GCB and non-GCB subtypes.

Literature Search Criteria and Guidelines Update Methodology

Prior to the update of this version of the NCCN Guidelines® for Non-Hodgkin’s Lymphomas an electronic search of the PubMed database was performed to obtain key literature in “Diffuse large B-cell lymphoma” published between June 2014 and October 2015 using the following search terms: diffuse large B-cell lymphoma, aggressive B-cell lymphoma, primary mediastinal B-cell lymphoma, double-hit lymphoma, gray zone lymphoma. The PubMed database was chosen as it remains the most widely used resource for medical literature and indexes only peer-reviewed biomedical literature.\(^11\)

The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase II; Clinical Trial, Phase III; Clinical Trial, Phase IV; Guideline; Randomized Controlled Trial; Meta-Analysis; Systematic Reviews; and Validation Studies.

The PubMed search resulted in 108 citations and their potential relevance was examined. The data from key PubMed articles as well as articles from additional sources deemed as relevant to these Guidelines have been included in this version of the Discussion section. Recommendations for which high-level evidence is lacking are based on the panel’s review of lower-level evidence and expert opinion.

The complete details of the Development and Update of the NCCN Guidelines are available on the NCCN webpage.
Diagnosis

Adequate immunophenotyping is required to establish the diagnosis and to determine GCB versus non-GCB origin. The typical immunophenotype is CD20+, CD45+, and CD3-. The recommended immunophenotyping panel includes CD20, CD3, CD5, CD10, CD45, BCL2, BCL6, Ki-67, IRF4/MUM1 and MYC. Patients with GCB-like immunophenotype along with the expression of MYC and either BCL2 or BCL6 by IHC should undergo FISH or karyotype testing for the detection of MYC, BCL2, and BCL6 gene rearrangements. Additional markers such as CD138, CD30, cyclin D1, ALK1, SOX11, EBV and HHV-8 may be useful under certain circumstances to establish the subtype. SOX11 positivity may be useful in differentiating rare cases of cyclin D1-negative pleomorphic or blastoid MCL from CD5-positive DLBCL.\(^\text{12,13}\)

Workup

The initial workup for newly diagnosed patients with DLBCL should include a thorough physical examination with attention to node-bearing areas, and evaluation of performance status (PS) and constitutional symptoms. Laboratory assessments should include standard blood work including CBC with differential, a comprehensive metabolic panel, and measurements of serum lactate dehydrogenase (LDH). Patients with high tumor burden and elevated LDH should be assessed for spontaneous tumor lysis syndrome (TLS), including measurements of uric acid, potassium, phosphorous, calcium, and renal function. HBV testing (surface antigen, surface antibody, and core antibody) is recommended especially if rituximab-based treatment regimens are being considered due to increased risks of viral reactivation,\(^\text{14}\) though viral reactivation has also been described after chemotherapy alone without rituximab. HIV testing and serum beta-2-microglobulin levels would be useful in selected patients.

PET-CT scans have a more clear-cut role in selected patients with DLBCL than in other lymphoid neoplasms. PET scans are particularly informative in the initial staging where upstaging resulting in altered therapy occurs about 9% of the time, and for response assessment after treatment because they can distinguish residual fibrotic masses from masses containing viable tumor.\(^\text{15}\) PET-CT scan ± chest/abdominal/pelvic CT with contrast of diagnostic quality is recommended for initial workup. As PET scans have now been incorporated into the response criteria, a baseline PET scan is necessary for optimal interpretation of post-treatment PET scans. PET-CT has also been reported to be accurate and complementary to bone marrow biopsy for the detection of bone marrow involvement in patients with newly diagnosed DLBCL.\(^\text{16,17}\) Bone marrow biopsy may not be needed if there is clearly positive marrow uptake by PET-CT. Bone marrow biopsy may also be omitted in the absence of any skeletal uptake on the staging PET/CT scan, unless finding another lymphoma subtype (discordant low-grade lymphoma) would be considered important for treatment decisions.

The staging workup is designed to identify all sites of known disease and determine prognosis with known clinical risk factors. International Prognostic Index (IPI) identifies specific groups of patients who are more or less likely to be cured with standard therapy.\(^\text{18,19}\) IPI scores are based on patient’s age, stage of disease, serum LDH level, PS, and the number of extranodal sites. In patients who are 60 years or younger, the prognostic factors include tumor stage, PS, and serum LDH level. Zhou et al reported an enhanced IPI (NCCN-IPI) to stratify patients with newly diagnosed DLBCL into 4 different risk groups (low, low-intermediate, high-intermediate, and high) based on their clinical features (age, LDH, sites of involvement, Ann Arbor stage, ECOG PS).\(^\text{20}\) This analysis included 1650 patients identified in NCCN database that were diagnosed with DLBCL between 2000 and 2010 and treated with...
rituximab-based therapy. The NCCN-IPI discriminated patients in the low- and high-risk subgroups better (5-year OS rate 96% vs 33%) than the IPI (5-year OS rate 90% vs 54%). The NCCN-IPI was also validated using an independent cohort of 1138 patients from the British Columbia Cancer Agency. While the IPI, revised IPI (R-IPI), and NCCN-IPI predict clinical outcome with high accuracy, R-IPI and NCCN-IPI could also identify a specific subgroup of patients with very good prognosis (3-year progression-free survival [PFS] and overall survival [OS] of 100%).

Elevated LDH, ≥2 extranodal sites and involvement of specific sites (the testes, paranasal sinus and bone marrow) are associated with increased risk for developing central nervous system (CNS) relapse. The German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL) recently proposed a prognostic model to predict the risk of CNS relapse incorporating the 5 clinical factors (age > 60 years, LDH > normal, stage III or IV, ECOG PS > 1, and involvement of the kidney or adrenal gland) and this model was validated in an independent cohort of 1597 patients by Savage et al. Prognostic model separated patients into three risk categories based on the rate of developing CNS disease at 2 years: low-risk (0 or 1 risk factor; rate of CNS disease ≤1%), intermediate-risk (2 or 3 factors; rate of CNS disease 2–10%) and high-risk group (4 or 5 factors; rate of CNS disease at 17.0%). In both datasets, involvement of the kidney or adrenal gland was highly associated with CNS relapse. Lumbar puncture should be considered in patients with 4-6 risk factors identified in the DSHNHL prognostic model, the presence of ≥2 extranodal sites plus elevated LDH, involvement of testes, HIV-associated lymphoma, or double hit lymphoma. The diagnostic yield is improved if flow cytometric analysis of cerebrospinal fluid is undertaken.

Treatment

Treatment options for DLBCL differ between patients with localized (Ann Arbor stage I-II) and advanced (Ann Arbor stage III-IV) disease. Prognosis is extremely favorable for patients with no adverse risk factors (elevated LDH, stage II bulky disease, older than 60 years or ECOG PS ≥ 2). Patients with advanced disease should be enrolled in clinical trials, whenever possible.

Stage I-II

In the SWOG 8736 study, 3 cycles of CHOP followed by involved field radiation therapy (IFRT) produced significantly better progression-free survival (PFS; 5-year estimated PFS: 77% vs. 64% for CHOP alone) and OS (82% vs. 72% for CHOP alone) than 8 cycles of CHOP alone in patients with localized aggressive NHL; however, this difference disappeared with further follow-up. The benefit of CHOP (3 cycles) followed by IFRT (5-year OS of 95%) in patients with limited-stage DLBCL (60 years or younger with no adverse risk factors) was also confirmed in a series from the British Columbia Cancer Agency. Another randomized trial (ECOG 1484 study) showed that the addition of RT to CHOP (8 cycles) prolonged disease-free survival (DFS) in patients with limited stage DLBCL who had achieved complete remission (CR) to CHOP alone (6-year DFS was 73% for IFRT and 56% for observation). In the a GELA study (LNH 93-4), however, the addition of RT to 4 cycles of CHOP did not provide any advantage over 4 cycles of CHOP alone for the treatment of older patients with low-risk localized aggressive lymphoma. The estimated 5-year event-free survival (EFS) was not different between the two groups (61% and 64%, respectively) and the 5-year estimated OS rates were 68% and 72%, respectively. However, in this study, administration of RT was markedly delayed and 12% of patients on the RT arm did not receive RT.
The efficacy of the addition of rituximab to CHOP (R-CHOP) and IFRT has also been reported in patients with limited stage DLBCL. In the SWOG 0014 study that evaluated 3 cycles of R-CHOP followed by IFRT in patients with at least one adverse factor (non-bulky stage II disease, age > 60 years, ECOG PS 2, or elevated serum LDH) as defined by the stage-modified IPI (N=60), the 4-year PFS rate was 88%, after a median follow-up of 5 years; the corresponding 4-year OS rate was 92%. In historical comparison, these results were favorable relative to the survival rates for patients treated without rituximab (4-year PFS and OS were 78% and 88%, respectively). A phase III trial (MabThera International Trial [MInT]) compared 6 cycles of CHOP-like chemotherapy to 6 cycles of CHOP-like chemotherapy plus rituximab. All patients were younger than 60 years of age and had 0-1 IPI risk factors. Three quarters of patients had limited stage disease, and RT was included for all extranodal sites of disease or any site >7.5 cm. The trial found a benefit to rituximab-based chemotherapy with a 6-year OS rate of 90.1% versus 80% (P = .0004). The 6-year EFS rate (74.3% vs. 55.8%; P < .0001) and PFS rate (80.2% vs. 63.9%; P < .0001) were also significantly higher for patients assigned to chemotherapy plus rituximab compared to chemotherapy alone.

Abbreviated course R-CHOP with RT is also associated with reduced short-term toxicity compared to 6-8 cycles of R-CHOP alone. A SEER-Medicare database analysis of a large cohort of older patients with stage I-II DLBCL confirmed that 3 cycles of R-CHOP with RT and 6-8 cycles of R-CHOP alone have similar OS; however, 3 cycles of R-CHOP with RT was associated with significantly lower risk of second-line therapy and lower incidences of neutropenia including those requiring hospitalization. The study suggested better upfront disease control and less toxicity with abbreviated RCHOP with RT.

In the two GELA studies, intensified chemotherapy [ACVBP (doxorubicin, cyclophosphamide, vindesine, bleomycin and prednisone) followed by consolidation with methotrexate, etoposide, ifosfamide and cytarabine] with or without rituximab was found to be superior to CHOP with or without rituximab (3 cycles) plus RT in patients with low-risk early-stage disease. However, this regimen was also associated with significant toxicity and includes vindesine, which is not available in the United States.

Stage III-IV

R-CHOP-21 chemotherapy is the standard treatment for patients with advanced stage DLBCL based on the results of the GELA study (LNH98-5) that demonstrated the addition of rituximab to CHOP-21 improved PFS and OS in older patients with advanced DLBCL. In this study, older patients (age 60–80 years; N=399) were randomized to receive 8 cycles of R-CHOP or CHOP. Long-term follow-up of this study showed that PFS (36.5% vs. 20%), DFS (64% vs. 43%), and OS (43.5% vs. 28%) rates were significantly in favor of R-CHOP at a median follow-up of 10 years. These findings have been confirmed in three additional randomized trials including the MInT (6 cycles of R-CHOP or CHOP) which extended the findings to young patients with 0 or 1 risk factors according to the IPI. The Dutch HOVON and Nordic Lymphoma Group study (8 cycles of R-CHOP-14 or CHOP-14) and the ECOG/CALGB study confirmed the findings in patients older than 60 years. The ECOG/CALGB 9703 study also showed that maintenance rituximab in first CR offered no clinical benefit to patients who received R-CHOP as their induction therapy.

The DSHNHL studies demonstrated that 6 cycles of dose dense CHOP (CHOP-14) as first-line therapy was superior to 6 cycles of CHOP-21, prior to the introduction of rituximab. In the RICOVER 60-trial, older patients (age 61–80 years) were randomized to receive
6 or 8 cycles CHOP-14 with or without 8 cycles of rituximab.46,47 RT was administered to sites of initial bulky disease with or without extranodal involvement. The addition of rituximab to 6 or 8 cycles of CHOP-14 (R-CHOP-14) significantly improved clinical outcomes compared with CHOP-14 alone. With a median observation time of 82 months, EFS was significantly improved after R-CHOP-14 (P < .001) compared with CHOP-14. OS rate was also significantly improved in patients treated with R-CHOP-14. No difference in clinical benefit but increased toxicity was seen in patients treated with 8 cycles compared with 6 cycles of therapy.47 The investigators concluded that 6 cycles of R-CHOP-14 in combination with 8 doses of rituximab should be the preferred regimen in this patient population.

The role of IFRT following CR (evaluated by CT criteria) to initial bulky sites ≥ 7.5 cm or extranodal involvement was evaluated in the RICOVER-noRTh trial (an amendment to the RICOVER-60 trial).48 In this study, 164 patients with stage III-IV disease were treated with 6 cycles of R-CHOP-14 (best arm of the RICOVER-60 trial) but RT to bulky sites or extranodal involvement was omitted. The 3-year PFS and OS rates were significantly inferior, compared to the corresponding survival rates in patients from the RICOVER-60 trial treated with same chemoimmunotherapy with RT to bulky sites.48 The study was therefore discontinued. Similarly, subgroup analyses of the MInT and RICOVER-60 trial showed that patients with skeletal involvement significantly benefitted from RT to sites of skeletal involvement.49 Although retrospective subgroup analyses may be subjected selection biases, the benefit of RT held up on multivariate analysis in both studies and may be considered.

Two randomized trials have compared R-CHOP-21 with dose-dense R-CHOP-14.50,51 A large phase III randomized trial involving 1080 patients with newly diagnosed DLBCL found no significant difference in either PFS or OS at a median follow up of 46 months.50 The 2-year OS rate was 82.7% in the R-CHOP-14 arm and 80.8% in the R-CHOP-21 arm (P = .3763). The corresponding 2-year PFS rates were 75.4% and 74.8%, respectively (P = 5907). Toxicity was similar, except for a lower rate of grade 3 or 4 neutropenia in the R-CHOP-14 arm (31% vs. 60%), reflecting the fact that all patients in the R-CHOP-14 arm received primary growth factor prophylaxis with G-CSF whereas no primary prophylaxis was given with R-CHOP-21.50 Notably, there was no difference in outcome between GCB-like and non-GCB-like DLBCL by IHC in this large prospective study. The phase III LNH03-6B GELA study compared 8 cycles of R-CHOP-14 with R-CHOP-21 in 602 older patients (age 60–80 years) with untreated DLBCL. After a median follow-up of 56 months, no significant differences between R-CHOP-14 and R-CHOP-21 were observed in terms of 3-year EFS (56% vs. 60%; P = .7614), PFS (60% vs. 62%) or OS rates (69% vs 72%).51 Grade 3 or 4 neutropenia were observed more frequently in the R-CHOP-14 arm (74% compared to 64% in the R-CHOP 21 arm) despite a higher proportion of patients having received G-CSF (90%) compared with patients in the R-CHOP-21 arm (66%).

The results of the dense-R-CHOEP trial showed that doubling the number of rituximab (375 mg/m²) infusions (from 6 to 12) administered with 8 x CHOEP-14 did not result in a significant improvement of EFS and OS in aaIPI2 patients with DLBCL.52 After a median follow-up of 24 months, the 2-year EFS and OS rates were 69% and 82% respectively. The corresponding survival rates in patients treated with 8 x CHOEP-14 with 6 infusions of rituximab in the R-MegaCHOEP study were 71% and 85% respectively.53 The lack of improvement in survival rates could be attributed to more aggressive chemotherapy (CHOP vs. CHOEP), different timing of rituximab infusions and
differences in the pharmacokinetic profile of younger and older patients. There was an improvement in EFS and OS rates in patients with aaIPI 3; however, it was not statistically significant because this group had only 11 patients.

Collectively, these studies suggest that R-CHOP-21 remains the standard treatment regimen for patients with newly diagnosed DLBCL with no improvement in outcome observed for dose-dense therapy in the rituximab era.

Multiple randomized trials (RICOVER 60, NHL-B2, MInT, and the MegaCHOEP trials) have demonstrated superior outcomes in women relative to men, particularly in older adults with older women benefiting more from the addition of rituximab than men. This could be explained by a slower clearance rate of rituximab in older women. Based on these data, a prospective non-randomized trial evaluated R-CHOP with rituximab dose of 500 mg/m² in men over the age of 60 with DLBCL and demonstrated that the serum levels and OS rates improved compared to historical data in older men treated with rituximab dose of 375mg/m², and similar to older women treated with rituximab dose of 375 mg/m². Based on these data, a rituximab dose of 500 mg/m² may be considered in older men (under the age of 80 years) treated with R-CHOP. A randomized clinical trial is ongoing.

Dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin) plus rituximab (DA-EPOCH-R) has shown significant activity in patients with untreated DLBCL. In a multicenter phase II CALGB study, DA-EPOCH-R (6–8 cycles) was evaluated in patients with previously untreated DLBCL (n=69; 48 patients with DLBCL). IPI score was high-intermediate risk in 19% and high risk in 21% of patients. After a median follow up of 62 months, the 5-year TTP was 81% and OS was 84% in all patients. The 5-year TTP rates among patients with low/low-intermediate, high-intermediate, and high risk IPI were 87%, 92%, and 54%, respectively ($P = 0.0085$); the 5-year OS in these subgroups were 95%, 92%, and 43%, respectively ($P<0.001$). The TTP rate was significantly higher in the subgroup with GCB phenotype compared with non-GCB phenotype (100% vs. 67%; $P=0.008$); the GC phenotype was also associated with a higher 5-year OS rate (94% vs. 68%; $P = 0.04$). High tumor proliferation index (Ki-67 \geq60%) was associated with significantly decreased TTP and OS only for the subgroup with non-GCB phenotype. Febrile neutropenia occurred in 36% (grade 4 in 7%) and no significant grade 4 non-hematologic toxicities were observed. The most common grade 3 non-hematologic toxicities included neuropathies (25%), fatigue (16%), and arrhythmia (6%). In another multi-institutional study that assessed the safety and efficacy of DA-EPOCH-R in patients with untreated large B-cell lymphomas and poor prognosis (IPI > 1; n = 81; DLBCL, n = 68; primary mediastinal DBCL, n = 6) and follicular lymphoma grade 3b, n = 7), DA-EPOCH-R produced a CR rate of 80.2%. After a median follow-up time of 64 months, 10-year EFS and OS rates were 47.8% and 63.6%, respectively.

An ongoing phase III randomized study (CALGB 50303) is evaluating DA-EPOCH-R compared with R-CHOP in untreated patients with DLBCL. Pending results of that study, there is insufficient evidence to recommend DA-EPOCH-R as standard initial therapy for patients with newly diagnosed DLBCL except in highly selected circumstances such as poor left-ventricular function, B-cell lymphoma unclassifiable with intermediate features between DLBCL and Burkitt lymphoma, double-hit lymphomas, and primary mediastinal B-cell lymphoma (PMBL).

Patients older than 80 years have not been represented in prospective clinical trials of R-CHOP and are usually not appropriate candidates for full-dose therapy. To address this, the GELA study group
Conducted a multicenter single-arm prospective phase II study evaluating the safety and efficacy of a decreased dose of CHOP with a conventional dose of rituximab (R-mini-CHOP) in 149 patients older than 80 years with DLBCL.58 After a median follow-up of 20 months, the median OS and PFS were 29 months and 21 months respectively. The 2-year OS and PFS rates were 59% and 47% respectively. An update with extended follow-up reports the 4-year PFS and OS rates to be 41% and 49%, respectively.59 Grade ≥3 neutropenia was the most frequent hematological toxicity observed in 59 patients. The guidelines have included R-miniCHOP as a treatment option for patients older than 80 years.

Role of HDT/ASCR

In the randomized GELA LNH87-2 study, patients with DLBCL in first CR after induction therapy received consolidation therapy with either sequential chemotherapy or HDT/ASCR.60 Although no difference in outcome was prospectively observed in this trial, a retrospective subset analysis of patients with aIPI high/intermediate- or high-risk disease (n=236), found that HDT/ASCR resulted in significantly improved outcomes compared with sequential chemotherapy with regards to both 8-year disease-free survival rate (55% vs. 39%; \(P=0.02\)) and 8-year OS rate (64% vs. 49%; \(P=0.04\)) in the high-intermediate/high-risk subset.60 This study was performed prior to rituximab-based induction chemoimmunotherapy.

In the SWOG 9704 trial, 253 patients with high-intermediate/high IPI were randomized to receive 3 cycles of R-CHOP or HDT/ASCR, following initial remission with 5 cycles of CHOP or R-CHOP induction.61 The 2-year PFS rate was significantly higher with HDT/ASCR compared with chemoimmunotherapy alone (69% vs. 55%; \(P=0.005\)); the 2-year OS rates were not significantly different (74% vs. 71%, respectively; \(P = .30\)). In an exploratory subset analysis, HDT/ASCR was associated with an OS benefit for high-risk patients. In this subgroup, the 2-year OS rates were 82% and 63% respectively, for patients treated with HDT/ASCR and chemoimmunotherapy. Notably, in this study a third of the patients did not receive rituximab as part of their induction regimen.

The role of upfront HDT/ASCR has also been evaluated in prospective studies.53,62,63 In the French GOELAMS 075 study, patients aged ≤60 years with DLBCL (N=286 evaluable) were randomized to receive 8 cycles of R-CHOP-14 or HDT with rituximab (R-HDT) followed by ASCR.62 The 3-year PFS rate and OS rates were 76% and 83%, respectively, with no significant differences between treatment arms.62 In a randomized trial of the German High-Grade NHL Study Group, patients aged ≤60 years with aggressive lymphomas (N=262 evaluable) were treated with 8 cycles of CHOEP-14 (cyclophosphamide, doxorubicin, vincristine, etoposide and prednisone) combined with 6 doses of rituximab (R-CHOEP-14) or 4 cycles of MegaCHOEP combined with 6 doses of rituximab and followed by ASCR (R-MegaCHOEP).53 No significant differences were observed between the R-CHOEP-14 and R-MegaCHOEP arms for PFS (3-year rate: 74% vs. 70%, respectively) or OS outcomes (3-year rate: 85% vs. 77%, respectively). Among patients with high/intermediate aIPI (score of 2), EFS (75.5% vs. 63.5%; \(P = .0509\)) and OS rates (91% vs. 77.1%; \(P = .01\)) were significantly better with R-CHEOP-14 compared with R-MegaCHOEP.53

In the randomized DLCL04 trial of the Italian Lymphoma Foundation, patients aged ≤65 years with DLBCL, 399 patients were randomized to receive rituximab-containing first-line regimens (8 cycles of R-CHOP-14 or 6 cycles of R-MegaCHOP-14) with or without HDT/ASCR.63 The 3-year PFS rate was significantly higher in the HDT/ASCR groups compared with the non-HDT/ASCR groups (70% vs. 59%; \(P=.010\)), but the 3-year OS rate was not significantly different between the two.
groups (81% and 78% respectively; \(P = .556 \)). In addition, no significant differences were observed in the 3-year PFS rates between the two rituximab-based first-line regimens.

The above studies, overall, found no benefit to upfront HDT/ASCR as compared with first-line rituximab-based chemoimmunotherapy, except in high-risk IPI patients, but this remains controversial since this finding emerged only on a retrospective subset analysis involving a small number of patients. Presently, first-line consolidation with HDT/ASCR is recommended only in selected high risk patients (category 2B), or in the context of a clinical trial.

NCCN Recommendations

R-CHOP (3 cycles) with ISRT or R-CHOP (6 cycles) with or without ISRT is recommended for patients with non-bulky (<7.5 cm) stage I or II disease. \(^{31,33}\) Patients with bulky disease (≥ 7.5 cm) may be treated more effectively with R-CHOP (6 cycles) with or without locoregional RT (category 1). \(^{33}\) Regarding the addition RT, it is important to consider the results from the RICOVER-noRTh trial that showed a significant advantage to adding RT to initial bulky sites ≥7.5 cm. \(^{48}\) R-mini-CHOP may be substituted for patients over the age of 80 to improve chemotherapy tolerability \(^{58,59}\) and ISRT alone is recommended for patients who are not candidates for any chemotherapy. See "Principles of Radiation Therapy" in the guidelines for the ISRT dose recommendations.

R-CHOP-21 for a total of 6 cycles (category 1) is recommended for patients with stage III-IV disease. \(^{33,41,42}\) In selected patients, RT to bulky sites may be beneficial (category 2B). In patients with bulky disease or impaired renal function, initial therapy should include monitoring and prophylaxis for TLS. R-CHOP-21 for a total of 6 cycles is the preferred regimen due to reduced toxicities. Other comparable anthracycline-based regimens may also be used. Suggested alternate regimens include DA-EPOCH-R (category 2B) \(^{56,57}\) or dose-dense R-CHOP-14 (category 3). \(^{50,51}\) Participation in clinical trials is recommended, if available.

Inclusion of any anthracycline or anthracenedione in patients with impaired cardiac function should include more frequent cardiac monitoring. The following regimens are used at NCCN Member Institutions for the first-line treatment of DLBCL in very frail patients or those with poor left ventricular function, based on limited published data.

- R-miniCHOP (for frail patients over 80 years of age) \(^{58,59}\)
- RCEPP (rituximab, cyclophosphamide, etoposide, prednisone, procarbazine)
- RCDOP (rituximab, cyclophosphamide, liposomal doxorubicin, vincristine, and prednisone) \(^{64-66}\)
- DA-EPOCH-R \(^{56,57}\)
- RCEOP (rituximab, cyclophosphamide, etoposide, vincristine, and prednisone) \(^{67}\)
- RGCVP (rituximab, gemcitabine, cyclophosphamide, vincristine, and prednisolone) \(^{68}\)

For concurrent presentation of CNS disease with parenchymal involvement, systemic methotrexate (≥3 g/m\(^2\)) should be incorporated as part of the treatment plan. Intrathecal methotrexate/cytarabine and/or 3 to 3.5 g/m\(^2\) systemic methotrexate should be incorporated as part of the treatment plan for concurrent presentation of CNS disease with leptomeningeal involvement. Ommaya reservoir placement should be considered in patients with leptomeningeal disease. When administering high dose methotrexate, patients must be pretreated with hydration and alkalization of the urine, and then receive leucovorin.
rescue beginning 24 hours after the initiation of methotrexate infusion. Renal and hepatic function must be monitored. Adequate recovery of blood counts should be confirmed prior to initiating the next cycle of R-CHOP.

Patients with risk factors for CNS involvement (age > 60 years, elevated LDH, stage III or IV, ECOG PS > 1, extranodal sites >1, kidney or adrenal gland involvement) should be considered for CNS prophylaxis. The method by which prophylaxis should be given is controversial. Intrathecal methotrexate given at least once per systemic treatment cycle has been used for many years. More recent retrospective studies have suggested that high-dose IV methotrexate-based prophylaxis may be associated with a lower incidence of CNS relapses. Systemic methotrexate with leucovorin rescue has been safely incorporated into R-CHOP-21, with methotrexate administered on day 15 of the 21-day R-CHOP cycle. However, other reports suggest that CNS prophylaxis is insufficient to prevent CNS relapse.

The NCCN Guidelines currently recommend CNS prophylaxis with 4 to 8 doses of intrathecal methotrexate and/or cytarabine, or 3-3.5 g/m² of systemic methotrexate.

Response Assessment

Interim restaging is performed to identify patients whose disease has not responded to or has progressed on induction therapy. A negative PET scan after 2 to 4 cycles of induction therapy has been associated with favorable outcomes in several studies. In patients with aggressive lymphoma (N=90) treated with first-line CHOP or CHOP-like regimens (with rituximab in 49% of cases), the 5-year EFS rates were significantly higher for those with a negative PET scan (n=77) compared to patients with a positive PET scan (n=22) following 4 cycles of induction therapy (80% vs. 36%; P < .0001).

However, interim PET scans can produce false positive results and some patients treated with chemoimmunotherapy have a favorable long-term outcome despite a positive interim PET scan. In a prospective study that evaluated the significance of interim PET scans in patients with DLBCL (after 4 cycles of accelerated R-CHOP), only 5 of 37 patients with a positive interim PET scan had a biopsy demonstrating persistent disease; PFS outcome in patients who were interim PET-positive, biopsy-negative was identical to that in patients with a negative interim PET scan. A retrospective analysis of 88 newly diagnosed patients with DLBCL treated with 6-8 cycles of R-CHOP also reported only a minor difference in the 2-year PFS rates between patients with a positive interim PET scan and a negative interim PET scan; the 2 year PFS rates were 72% and 85% respectively (P = .0475). Conversely, the end-of-treatment PET scan was highly predictive of PFS; the 2-year PFS rate was 64% for patients with a final positive PET scan compared to 83% for those with a final negative PET scan (P < .001).

More recent reports have also confirmed the limited prognostic value of interim PET scans in patients with DLBCL treated with R-CHOP. In a prospective study that evaluated the predictive value of interim PET scans after 2 cycles of R-CHOP in 138 evaluable patients, the 2-year EFS rate was significantly shorter for patients with a positive interim PET-scan compared to those with a negative interim PET scan (48% vs. 74%; P = .004); however, the 2-year OS was not significantly different between the two groups (88% vs. 91%; P = .46).
Therefore, interim PET imaging is not recommended to be used to guide changes in therapy. If treatment modifications are considered based on interim PET scan results, a repeat biopsy of residual masses should be strongly considered to confirm PET-positivity prior to additional therapy. If the biopsy is negative, the planned course of treatment as recommended for PET-negative guidelines should be completed. Patients should undergo evaluation prior to receiving RT, including all positive studies. If RT is not planned, interimrestaging after 3–4 cycles of R-CHOP is appropriate to confirm response. End of treatment restaging is performed upon completion of treatment. The optimal time to end of treatment restaging is not known. However, the panel recommends waiting for 6-8 weeks after completion of therapy before repeating PET scans.

Response assessment by PET-CT should be done according to the 5-point scale (5-PS). The 5-PS is based on the visual assessment of FDG uptake in the involved sites relative to that of the mediastinum and the liver. A score of 1 denotes no abnormal FDG-avidity, while a score of 2 represents uptake less than the mediastinum. A score of 3 denotes uptake greater than the mediastinum but less than the liver, while scores of 4 and 5 denote uptake greater than the liver, and greater than the liver with new sites of disease, respectively. Different clinical trials have considered scores of either 1-2 or 1-3 to be PET-negative, while scores of 4-5 are universally considered PET-positive. A score of 4 on an interim or end of treatment restaging scan may be consistent with a partial response if the FDG-avidity has declined from initial staging, while a score of 5 denotes progressive disease.

Follow-up
Considerable debate remains with the routine use of imaging for surveillance in patients who achieve a CR after induction therapy. Although positive scans can help to identify patients with early asymptomatic disease relapse, false positive cases remain common and problematic, and may lead to unnecessary radiation exposure for patients as well as increased healthcare costs. In a study that evaluated the use of surveillance CT scans (at 3 and 12 months after completion of chemotherapy) in patients with DLBCL who achieved a CR with induction chemotherapy (N=117), 35 patients relapsed, and only 6% of these relapses were detected by follow-up CT scan in asymptomatic patients; 86% of cases of relapse were associated with development of new symptoms or signs of relapse. The investigators therefore concluded that routine surveillance with CT scans had limited value in the detection of early relapse in patients with a CR following induction therapy. In a retrospective study evaluating the use of surveillance imaging in patients with relapsed aggressive lymphoma who had a CR to initial chemotherapy (N=108), 20% of relapses were detected by imaging in asymptomatic patients. In the remaining 80% of cases, relapse was identified by clinical signs and/or symptoms. Moreover, the cases of relapse detected by imaging were more likely to represent a population of patients with low-risk disease based on age-adjusted IPI at the time of relapse. Thus, routine imaging during remission may help to identify patients with more limited disease at the time of relapse, but has not been shown to improve ultimate outcome.

In a prospective study that evaluated the role of PET scans (at 6, 12, 18, and 24 months after completion of induction therapy) in patients with a CR after induction therapy for lymphomas, surveillance using PET scans was found to be useful for detecting early relapse. Among the cohort of patients with aggressive lymphomas in this study (n=183), follow-up PET scans detected true relapses in 10% of patients at 6 months, 5% at 12 months, and 11% at 18 months; the rate of false-positive scans was low, at 1% (including cohorts of patients with
Inconclusive PET scans were obtained in 4% of patients (8 out of 183), 6 of those had confirmed relapse based on biopsy evaluation. In a retrospective study that evaluated the use of follow-up PET/CT scan in patients with DLBCL who achieved a CR after induction therapy (N=75), follow-up PET/CT scan detected relapse in 27 patients, of which 23 patients had confirmed relapse based on biopsy evaluation; thus, the positive predictive value of PET/CT scan for detecting relapse was 0.85. In this study, patient age (>60 years) and the presence of clinical signs of relapse were significant predictors of disease relapse.

Data from more recent retrospective studies also suggest that routine surveillance with PET or CT scans is of limited utility in the detection of relapse in majority of patients with DLBCL. A study comparing the performance of surveillance PET scans in patients with DLBCL treated with CHOP alone versus R-CHOP, found higher false positive results in patients treated with R-CHOP (77% vs. 26%; P < .001). Another study reported a positive predictive value of 56% for surveillance PET-CT scans in patients IPI score <3 compared with 80% for patients with IPI score ≥3, suggesting that surveillance PET-CT has a very limited role in the majority of patients in CR after primary therapy. Another multi-institutional retrospective study evaluated the utility of surveillance scans in two independent prospectively enrolled cohorts of patients with DLBCL treated with anthracycline-based chemoimmunotherapy. In one cohort (n = 680; 552 patients entered post-treatment observation), post treatment surveillance scans detected DLBCL relapse prior to clinical manifestations only in 1.6% of patients (9 out of 552 patients) during a planned follow-up visit. In another cohort (n = 261; 222 patients entered post-treatment observation), surveillance imaging detected asymptomatic relapse only in 1.8% of patients (4 out of 222 patients). A population-based study of patients from the Danish and Swedish lymphoma registries also showed that imaging-based surveillance strategy had no impact on survival for patients DLBCL in first complete remission.

A multi-institutional retrospective study evaluated the EFS at 24 months (EFS24) in two independent prospectively enrolled cohorts of 767 patients with DLBCL treated with anthracycline-based chemoimmunotherapy. Patients who achieved EFS24 had an OS equivalent to that of the age-matched and sex-matched general population (P = .25). This was also confirmed in another data set that included 820 patients from a GELA LNH2003B program and the hospital-based registry in France (P = .71). These data indicate that EFS24 should be useful for developing strategies for post-therapy surveillance, patient counseling, and as an end point in clinical studies for patients with DLBCL.

In the absence of evidence demonstrating an improved outcome favoring routine surveillance imaging for the detection of relapse, the NCCN Guidelines do not recommend the use of PET or CT for routine surveillance for patients with stage I-II disease who have achieved a CR to initial therapy. For patients with stage III-IV disease who achieve remission to initial therapy, the NCCN Guidelines recommend CT scans no more than once every 6 months for up to 2 years after completion of treatment, with no ongoing routine surveillance imaging after that time, unless it is clinically indicated. When surveillance imaging is performed, CT scan is preferred over PET/CT for the majority of patients. PET/CT may be preferable is for patients with primarily osseous presentations, with the caveat that bone remodeling may also be FDG-avid, so a biopsy is recommended for PET positive sites prior to instituting second line therapy.
Interim and End of Treatment Response Evaluation for Stage I-II

When the treatment plan involves RT, restaging should be done after completion of first-line chemoimmunotherapy prior to initiation of RT as the dose of RT will be influenced by the result (see “Principles of RT” in the Guidelines). If interim restaging demonstrates CR (PET-negative), the planned course of treatment with same dose of RT is completed. If the interim restaging demonstrates a PR (PET-positive), treatment with a higher dose of RT (see Guidelines section on “Principles of RT”) is appropriate. It is appropriate to enroll patients with an interim PR on a clinical trial. At the present time, there is no data to suggest that a PR with persistent PET positivity after 3 cycles should prompt a change in treatment. If the PET scan is positive after 6 cycles of RCHOP, the patient can proceed to second-line therapy followed by HDT/ASCR with or without RT. Patients with primary refractory or progressive disease are managed as refractory or relapsed disease. After end of treatment restaging, follow-up at regular intervals (every 3–6 months for 5 years and then annually or as clinically indicated thereafter) is recommended for patients with CR. In these patients, follow-up CT scans are recommended only if clinically indicated. Patients with PR and those with no response to treatment or progressive disease are treated as described for relapsed or refractory disease. Palliative RT is recommended for selected patients who are not candidates for chemoimmunotherapy.

Interim and End of Treatment Response Evaluation for Stage III-IV

If interim staging (after 2–4 cycles of R-CHOP-21) demonstrates a CR and PR, the planned course of R-CHOP to a total of 6 cycles is completed. End of treatment restaging is performed upon completion of treatment. After end of treatment restaging, observation is preferred for patients with CR. RT to initially bulky disease (category 2B) or first-line consolidation with HDT/ASCR can be considered in selected high-risk patients (category 2B). Patients in CR are followed up at regular intervals (every 3–6 months for 5 years and then annually or as clinically indicated thereafter). In these patients, follow-up imaging CT scans should be performed no more than every 6 months for 2 years after completion of therapy, and then only as clinically indicated thereafter. Patients with PR (after completion of initial therapy) and those with no response to treatment or progressive disease are treated as described below for relapsed or refractory disease. Palliative RT is recommended for selected patients who are not candidates for chemoimmunotherapy.

Relapsed or Refractory Disease

The role of HDT/ASCR in patients with relapsed or refractory disease was demonstrated in an international randomized phase III trial (PARMA study). In this study, patients with DLBCL responding to induction DHAP (dexamethasone, cisplatin and cytarabine) chemotherapy after first or second relapse (N=109) were randomized to receive additional DHAP chemotherapy plus RT or RT plus HDT/ASCR. The 5-year EFS rate was significantly higher among the transplant group compared with the non-transplant group (46% vs. 12%; \(P = .001 \)), as was the 5-year OS (53% vs. 32%; \(P = .038 \)). This study was performed prior to the availability of rituximab. A recent retrospective analysis based on data from the EBMT registry evaluated the role of HDT/ASCR in patients achieving a second CR after salvage therapy (N=470). In this analysis, 25% of patients had received rituximab-based therapy prior to ASCR. The 5-year DFS and OS was 48% and 63% after ASCR for all patients. The median DFS after ASCR was 51 months, which was significantly longer than the duration of first CR (11 months; \(P < .001 \)). The longer DFS with ASCR compared with first CR was also significant in the subgroup of patients previously treated with rituximab (median not reached vs. 10 months;
The efficacy of second-line therapy is predicted by the second-line age-adjusted IPI. Furthermore, pre-transplantation PET scans have been identified as predictive factors following HDT/ASCR. PET positivity before transplant and chemoresistance are associated with a poor outcome. The results of studies from the GELTAMO group and ABMTR suggested that HDT/ASCR should be considered for patients who do not achieve a CR but who are still sensitive to chemotherapy.

Rituximab as a single agent is modestly active in patients with relapsed or refractory DLBCL and is reserved for the frail older patient. Several chemotherapy regimens (with or without rituximab) such as DHAP (dexamethasone, cisplatin and cytarabine), ESHAP (etoposide, methylprednisolone, cytarabine and cisplatin), ICE (ifosfamide, carboplatin and etoposide), MINE (mesna, ifosfamide, mitoxantrone and etoposide), EPOCH and CEPP (cyclophosphamide, etoposide, prednisone, procarbazine) have been evaluated in patients with relapsed or refractory DLBCL. In an outpatient setting, rituximab in combination with ICE (R-ICE) produced an ORR of 71% (25% CR) and an estimated 1-year EFS rate and OS rate of 60% and 72%, respectively, in patients with refractory B-cell lymphoma (N=28). In a phase II study, R-ICE regimen produced a CR rate of 53% in patients with relapsed or refractory DLBCL (N=34), which was significantly better than historical controls treated with ICE alone (27%).

An international randomized intergroup study (CORAL study; N=477) evaluated second-line therapy of relapsed or refractory DLBCL with R-ICE versus R-DHAP, followed by ASCR in all chemosensitive patients. No significant difference in outcome was found between treatment arms. The overall response rates were 63% after R-ICE and 64% after R-DHAP. The 4-year EFS rate was 26% with R-ICE compared with 34% with R-DHAP (P = .2) and the 4-year OS rate was 43% and 51%, respectively (P = .3). Notably, patients relapsing less than 1 year after initial R-CHOP therapy had a particularly poor outcome with 3-year PFS of 23%. Moreover, the subgroup of patients with MYC gene rearrangement (with or without concurrent in BCL2 and/or BCL6 gene rearrangements) had poor outcomes regardless of treatment arm. The 4-year PFS was 18% among patients with MYC gene rearrangements compared with 42% in those without (P=.032); 4-year OS was 29% and 62%, respectively (P=.011). Among patients with MYC gene rearrangements, the 4-year PFS was 17% with R-DHAP and 19% with R-ICE; OS was 26% and 31%, respectively. Novel approaches are needed for these poor-risk patients. Interestingly, a subgroup analysis from the CORAL study (Bio-CORAL) showed that for patients with a GCB phenotype (based on Hans algorithm), R-DHAP resulted in improved PFS (3-year PFS 52% vs. 31% with R-ICE). This difference was not observed among patients with non-GCB phenotype (3-year PFS 32% with R-DHAP vs. 27% with R-ICE). R-DHAP and R-ICE are acceptable options for patients with relapsed or refractory DLBCL.

The CORAL study was also designed to evaluate the role of rituximab maintenance (every 2 months for 1 year) following ASCR. Among the patients randomized post-ASCR to rituximab maintenance or observation (n=242), the 4-year EFS after ASCR was similar between randomized groups: 52% with rituximab versus 53% with observation. The proportion of patients with progression or relapse was similar between randomized groups. In addition, the 4-year OS was not statistically different (61% and 65%, respectively). Serious adverse events were more frequent in the rituximab maintenance arm. Given
that this study showed no benefit with rituximab maintenance compared with observation post-ASCR, maintenance therapy cannot be recommended in this setting.120

Gemcitabine-based chemotherapy regimens such as GDP (gemcitabine, dexamethasone, cisplatin) and GemOx (gemcitabine and oxaliplatin),123-128 bendamustine and rituximab (BR),129-132 and lenalidomide (with or without rituximab)133-137 have also been evaluated in patients with relapsed or refractory DLBCL.

GemOx in combination with rituximab (R-GemOx) was evaluated in patients with relapsed or refractory DLBCL who are not eligible for transplant.124,126,127 In a pilot study of 46 patients with relapsed or refractory B-cell lymphoma, the majority of whom (72\%) had DLBCL, R-GemOx resulted in an ORR of 83\% and half of the patients achieved a CR.124 The 2-year EFS and OS rates in this study were 43\% and 66\%, respectively. In a subsequent multicenter phase II study that included 49 patients with relapsed or refractory DLBCL, R-GemOx resulted in an ORR of 61\% (44\% CR and 17\% PR).127 The 5-year PFS and OS rates were 12.8\% and 13.9\%, respectively.

In a small dose-escalation study of patients with relapsed/refractory aggressive NHL (N=9; DLBCL, n=5), BR regimen resulted in PR in 1 patient (90 mg/m2 dose of bendamustine; n=3) while the same combination with 120 mg/m2 dose of bendamustine (n=6) resulted in CR in 5 patients and a PR in 1 patient.130 In a recent phase II study of the BR regimen (bendamustine dose 120 mg/m2) in patients with relapsed/refractory DLBCL (N=59; median age 67 years), the ORR was 63\% with a CR in 37\% of patients.131 Patients had received 1 to 3 prior therapies, and were not considered suitable for (or have undergone) ASCR. Nearly all patients (97\%) had received prior therapy with rituximab-based regimens.131 The median PFS was approximately 7 months. The most common grade 3 or 4 toxicities were neutropenia (76\%) and thrombocytopenia (22\%).131 In older patients with relapsed/refractory DLBCL (59 patients; median age 74 years; 48 evaluable patients), the BR regimen (with bendamustine dose 120 mg/m2) resulted in an ORR of 45.8\% (15.3\% CR; 30.5\% PR).132 The median duration of response and median PFS were 17.3 months and 3.6 months, respectively. Myelosuppression was the most common grade 3 or 4 toxicity.

Lenalidomide monotherapy has been shown to induce an ORR of 28\% in patients with relapsed or refractory DLBCL.133,134 Data from retrospective analysis suggest that the response rates are higher in patients with non-GCB DLBCL versus GCB-DLBCL (ORR: 52.9\% vs. 8.7\%; P = .006; CR rate: 23.5\% versus 4.3\%).135 In a multicenter randomized study, 102 patients with relapsed/refractory DLBCL (\geq2 prior therapies or ineligible for stem cell transplantation; GCB-DLBCL, n=48; non-GCB DLBCL, n=54) were randomized to lenalidomide monotherapy or single-agent investigator’s choice.138 Lenalidomide resulted in improved ORR, PFS and OS in patients with non-GCB subtype compared to those with GCB subtype. In another phase II trial, 45 patients with relapsed or refractory DLBCL (n=32), transformed large cell lymphoma (n=9) or follicular lymphoma grade 3 (n=4), lenalidomide in combination with rituximab induced ORR in 33\% of patients.136 The median response duration, PFS and OS were 10.2 months, 3.7 months and 10.7 months, respectively.136 Myelosuppression was the most common grade 3 or 4 toxicity.

Brentuximab vedotin, a CD30-directed antibody-drug conjugate, has demonstrated activity in patients with relapsed or refractory CD30-positive lymphomas. A phase 2, open-label study evaluated the efficacy of brentuximab vedotin in relapsed or refractory CD30-positive NHL.139 In a planned subset analysis that included 49 patients with
DLBCL, the ORR was 44% (17% CR) with a median duration of 16.6 months. Although there was no statistical correlation between the response and the level of CD30 expression, all patients with responding disease had quantifiable CD30 by IHC.

Brentuximab vedotin (for CD30-positive DLBCL), lenalidomide ± rituximab (for non-GCB-DLBCL) and bendamustine ± rituximab are included as options for patients with relapsed or refractory DLBCL who are not candidates for HDT/ASCR.

NCCN Recommendations

All patients with relapsed or refractory DLBCL should be considered for enrollment in available clinical trials. HDT/ASCR is the treatment of choice for patients with relapsed or refractory DLBCL that is chemosensitive at relapse. Patients who are candidates for HDT/ASCR should be treated with second-line chemotherapy, with or without rituximab (depending on whether the patient is deemed to be refractory to prior rituximab regimens). Suggested regimens (with or without rituximab) include the following:

- DHAP (dexamethasone, cisplatin, cytarabine)
- ESHAP (methylprednisolone, etoposide, cytarabine, cisplatin)
- GDP (gemcitabine, dexamethasone, cisplatin)
- ICE (ifosfamide, carboplatin and etoposide)
- MINE (mitoxantrone, ifosfamide, mesna, etoposide)

Patients with CR or PR to second-line therapy should be considered for further consolidation with HDT/ASCR (category 1 for patients with CR) with or without RT. ISRT before HDT/ASCR has been shown to result in good local disease control and improved outcome. Additional RT can be given to limited sites with prior positive disease before or after ASCR. Pertinent clinical trials, including the option of allogeneic stem cell transplantation, may also be considered.

Patients who are not eligible for HDT/ASCR should be treated in the context of a clinical trial. Alternatively, in the absence of suitable clinical trials, patients can also be treated single agent rituximab or the following chemotherapy regimens (with or without rituximab).

- Bendamustine
- Brentuximab vedotin for CD30+ disease (category 2B)
- CEPP
- CEOP (cyclophosphamide, etoposide, vincristine, prednisone)
- DA-EPOCH
- GDP
- Gemcitabine, dexamethasone, carboplatin
- GemOx
- Lenalidomide (non-GCB DLBCL)

Patients with disease relapse following HDT/ASCR should be treated in the context of a clinical trial or treatment should be individualized. However, those with progressive disease after three successive regimens are unlikely to derive additional benefit from currently available chemotherapy regimens, except for patients who have experienced a long disease-free interval.

Primary Mediastinal Large B-cell Lymphoma

PMBL is a distinct subtype of NHL that can be histologically indistinguishable from DLBCL that tends to occur in young adults with a median age of 35 years with a slight female predominance. PMBL arises from thymic B-cells with initial local regional spread to supraclavicular, cervical, hilar nodes and into the mediastinum and
Widespread extranodal disease is uncommon at initial diagnosis, present in approximately one quarter of patients, but can be more common at recurrence. Clinical symptoms related to rapid growth of a mediastinal mass include superior vena cava (SVC) syndrome, pericardial and pleural effusions.

GEP has indicated that PMBL is distinct from DLBCL; the pattern of gene expression in PMBL is more similar to classical Hodgkin lymphoma (CHL). PMBL expresses B-cell antigens and lacks surface immunoglobulins. PMBL is CD19+, CD20+, CD22+, CD21-, IRF4/MUM1+ and CD23+ with a variable expression of BCL2 and BCL6. CD30 is weakly and heterogeneously expressed in more than 80% of cases and CD15 is occasionally present. CD10 positivity is seen in 8-32% cases. PMBL is also characterized by a low expression of HLA I or II molecules. There have been rare cases of mediastinal gray zone lymphomas with combined features of PMBL and CHL.

Cytogenetic abnormalities that are common in PMBL include gains in chromosome 9p24 (involving the JAK2 in 50–75% of patients) and chromosome 2p15 (involving the c-REL, encoding a member of the NF-κB family of transcription factors) and loss in chromosomes 1p, 3p, 13q, 15q, and 17p. Age-adjusted IPI is of limited value in determining the prognosis of PMBL at diagnosis. In a retrospective analysis of 141 patients from MSKCC, ≥ 2 extranodal sites and the type of initial therapy were predictors of outcome for EFS, whereas only the initial therapy was a predictor for OS.

In retrospective analyses, intensive chemotherapy regimens have appeared more effective than CHOP and the addition of IFRT has been associated with improved PFS; however, these studies were conducted in the pre-rituximab era. The results of subsequent retrospective studies suggest that although the addition of rituximab to MACOP-B (methotrexate, leucovorin, doxorubicin, cyclophosphamide, vincristine, prednisone and bleomycin) or VACOP-B (etoposide, leucovorin, doxorubicin, cyclophosphamide, vincristine, prednisone and bleomycin) did not appear to result in significant differences in clinical outcomes, its addition to CHOP improves outcome in patients with PMBL. In an analysis of the subgroup of patients with PMBL (N=87) from the randomized MInT study, which evaluated CHOP-like regimens with or without rituximab, the addition of rituximab significantly improved the CR rate (80% vs. 54% without rituximab; P=.015) and 3-year EFS rate (78% vs. 52%; P=.012), but not the OS rate (89% vs. 78%; P = .158). The MInT study, however, only included young low-risk patients with IPI scores 0-1. In a recent follow-up report with a median observation time of 62 months in patients with PMBL, the increase in EFS with rituximab remained significant at 5 years (79% vs. 47%; P=.011). The 5-year PFS was also significantly increased in the rituximab arm (90% vs. 60%; P=.006); 5-year OS was not significantly different (90% vs. 78%), but was similar to OS outcomes in patients with DLBCL in this study (92% with rituximab vs. 81% without; P<.001). In a retrospective analysis of 95 consecutive patients treated with chemotherapy (VACOP-B or CHOP) with and without rituximab, the 5-year PFS and OS rates were 79% and 97% for patients treated with rituximab-based chemotherapy compared with 58% and 88%, respectively for those treated with chemotherapy alone. The 5-year PFS rates in patients treated with R-VACOP-B, R-CHOP, VACOP-B, and CHOP were 83%, 69%, 62%, and 20%, respectively. Sequential dose dense R-CHOP followed by ICE consolidation (without RT) was also highly effective in patients with PMBL, with similar outcomes to the above analysis with R-chemotherapy from the MInT study. At a median follow up for surviving patients at 3 years, the OS and PFS rates were 88% and 78%, respectively. A retrospective analysis of 63 patients with PMBL treated with R-CHOP found a 21% rate of primary induction failure, with adverse predictors of outcome being advanced
stage and high-risk IPI scores, suggesting that R-CHOP may not be the optimal chemotherapy backbone in PMBL, particularly for high-risk patients.157

DA-EPOCH-R has also been evaluated in small cohorts of patients with PMBL.158,159 A small prospective NCI study of the DA-EPOCH-R without RT demonstrated an encouraging 91% EFS at a median follow-up of 4 years. In a subsequent prospective phase II study from the NCI, DA-EPOCH-R (6–8 cycles) and filgrastim, without RT, was evaluated in 51 patients with previously untreated PMBL.158 Stage IV disease was present in 29% of patients. After treatment with DA-EPOCH-R, 2 patients showed persistent focal disease and 1 patient had disease progression; 2 of these patients required mediastinal RT while 1 patient was observed after excision biopsy. At a median follow up of 63 months, EFS and OS rates were 93% and 97%, respectively. Grade 4 neutropenia and thrombocytopenia occurred in 50% and 6% of treatment cycles, respectively. Hospitalization for febrile neutropenia occurred in 13% of cycles.158 This study showed that DA-EPOCH-R is a highly effective regimen in patients with PMBL and obviates the need for RT in the large majority of patients. A single institution retrospective analysis also showed that R-CHOP/R-VACOP-B with RT and DA-EPOCH-R without RT result in excellent outcomes in patients with stage I-II PMBL.159

The role of consolidation RT remains unclear. A few studies have evaluated the utility of PET scans (based on the 5-PS) to identify patients at high-risk of progression who could be considered for RT after completion of chemotherapy.160,161 However, these findings need to be confirmed in larger prospective randomized trials.

In the absence of randomized trials, optimal first-line treatment for patients with PMBL is more controversial than other subtypes of NHL. However, based on the available data, the following regimens are included as options for first-line therapy.

- R-CHOP (6 cycles) ± RT
- DA-EPOCH-R (6 cycles)158 + RT only for persistent PET-positive local disease
- R-CHOP (4 cycles) followed by ICE (3 cycles)156 with or without RT (category 2B)

Post-treatment PET-CT is considered essential; if PET-CT is negative at the end of treatment and initial disease was non-bulky, patients may be observed. Residual mediastinal masses are common. For patients initially treated with R-CHOP, consolidation with RT should be considered, particularly if increased FDG-activity persists in the primary tumor. For patients who are PET-CT negative after more intensive therapies (e.g., DA-EPOCH-R), observation may be appropriate. If PET-CT is positive, biopsy is recommended before additional treatment is contemplated.

Grey Zone Lymphoma

Grey zone lymphomas, a provisional diagnostic category included in the 2008 WHO classification, refer to a group of lymphomas with features intermediate between DLBCL and classical Hodgkin lymphoma (cHL).154,162-165 Other synonyms include large B-cell lymphoma with Hodgkin features or Hodgkin-like anaplastic large cell lymphoma. The morphology of grey zone lymphomas is characterized by sheet-like growth of pleomorphic cells in a diffusely fibrous stroma; cells are typically larger and more pleomorphic than those in PMBL, and may sometimes resemble lacunar or Hodgkin-like cells.164 Necrosis without neutrophilic infiltration is frequently present.154,162,164 Patients with gray zone lymphomas may present with mediastinal or non-mediastinal disease. Mediastinal grey zone lymphomas are more commonly seen in
young adult males between the ages of 20 to 40 years and are characterized by the presence of a large anterior mediastinal mass with or without supraclavicular lymph node involvement.162,163,165 Non-mediastinal gray zone lymphomas occur in older patients, have a higher incidence of bone marrow involvement, more than one extranodal disease, advanced stage disease and high-risk IPI score than mediastinal grey zone lymphomas.166 In a retrospective multicenter analysis of 112 patients with grey zone lymphomas, mediastinal presentations were found in 43\% of patients, while 57\% presented with non-mediastinal grey zone lymphomas.166

The immunophenotype is atypical, often showing transitional features between PMBL and CHL. In general, CD45 is often positive, and CD15, CD20, CD30, and CD79a are also frequently positive. CD10 and ALK are usually negative. B-cell transcription factors such as PAX5, BOB.1, and OCT-2 are often positive.162,164,167 BCL6 is variably expressed. EBV is more often negative.162,163 If the morphology more closely resembles PMBL, absence of CD20, or CD15 positivity, would be suggestive of grey zone lymphoma. If the morphology more closely resembles cHL, strong CD20 expression (and/or other B-cell markers) and absence of CD15 would be suggestive of grey zone lymphoma.162 A study that evaluated epigenetic changes based on DNA methylation analysis of microdissected tumor cells from patients with mediastinal grey zone lymphomas, PMBL, cHL, and DLBCL showed distinct methylation signatures (hypomethylated and hypermethylated sites) of CpG targets between PMBL and cHL.168 The methylation profiles of patients with grey zone lymphoma were intermediate to those of PMBL and cHL, but distinct from patients with DLBCL. Among 235 CpG targets that were identified as being differentially methylated between the lymphomas, 22 targets could be used to readily distinguish between PMBL and CHL cHL, with grey zone lymphomas showing an overlap of both signatures. The investigators concluded that the unique epigenetic signature of mediastinal grey zone lymphomas provide validation of its classification as a separate disease entity in the 2008 WHO classification.168

The treatment of patients with grey zone lymphomas poses a challenge, as these lymphomas appear to be associated with a worse prognosis compared with PMBL or cHL.164,167,169 In a prospective study that evaluated 6 to 8 cycles of DA-EPOCH-R in a small group of patients with mediastinal grey zone lymphoma (n=24), the EFS and OS were 62\% and 74\%, respectively, at the median follow-up of 59 months.170 With a median follow-up of 5 years, the EFS (62\% vs 93\%; \textit{P} = .0005) and OS (74\% vs 97\%; \textit{P} = .0012), were significantly lower for patients with mediastinal grey zone lymphoma compared to patients with PMBL (n = 51) enrolled in the same study. In a multicenter retrospective analysis of gray zone lymphoma (that did not have central pathology review), patients treated with CHOP-like regimens with or without rituximab had superior outcomes compared to subjects treated with ABVD, with 2 year PFS rates of 52\% and 22\%, respectively.166

Patients with grey zone lymphomas are best managed in cancer centers with experience in treating this type of lymphoma, preferably in the context of clinical trials where appropriate. No standard of care or consensus exists for the management of patients with grey zone lymphomas, although patients are typically treated with multiagent chemotherapy regimens used for patients with DLBCL. The addition of rituximab is generally suggested for tumors expressing CD20. In the absence of suitable clinical trials, R-CHOP-21 or DA-EPOCH-R should be considered. Given the apparent inferior outcomes among gray zone lymphomas treated with traditional chemotherapy regimens, consolidative RT should be strongly considered for patients with limited stage disease amenable to RT.
Double-hit lymphomas

DLBCL or high-grade B-cell lymphoma unclassifiable (intermediate between DLBCL and BL) with MYC gene rearrangement in addition to BCL2 and/or BCL6 gene rearrangements by FISH or standard cytogenetics are known as double-hit lymphomas (DHL). Immunohistochemical staining can also identify DLBCL with dual expression of both MYC and BCL2 proteins, known as double-expressing DLBCL (DEL). These patients have an inferior prognosis compared to those with DLBCL as a whole, but not to the same magnitude as patients with true DHL on the basis of gene rearrangements. FISH for MYC, BCL2, and BCL6 gene rearrangements is recommended for those with expression of MYC and either BCL2 or BCL6 by IHC, and a GCB-like immunophenotype. Nearly all DHL are GCB-DLBCL and are characterized by highly aggressive clinical behavior and overlapping pathologic features with DLBCL, Burkitt lymphoma (BL) and B-cell lymphoblastic lymphoma/leukemia (B-LBL). DHL have been observed in 2% to 11% of newly diagnosed patients with DLBCL.

DHL are highly aggressive with very poor clinical outcomes, even with rituximab-based chemoimmunotherapy or intensive therapy with stem cell transplantation. In a series of 193 patients with DLBCL uniformly treated with standard R-CHOP, the median OS (13 months vs. 95 months) and PFS (6 months vs. 95 months), 3-year PFS rate (46% vs. 65%; P=.012) and 3-year OS rate (46% vs. 75%; P=.002) were significantly lower in patients with DHL compared with those without DHL. In another study with a longer follow-up, 5-year PFS and OS were 18% and 27%, respectively, in patients with double-hit DLBCL treated with R-CHOP. These studies have also shown that high expressions of both MYC and BCL2 protein levels (assessed by IHC but not MYC or BCL2 expression alone) were associated with significantly inferior outcomes after treatment with R-CHOP. In the multivariate analysis that included IPI score and cell of origin, concurrent MYC/BCL2 expression remained a significant independent predictor of poorer PFS and OS after R-CHOP.

Data from retrospective studies suggest that more intensive chemotherapy regimens may result in better outcomes. In a multicenter retrospective analysis of 106 patients (77% of patients had DHL characterized by MYC and BCL2 gene rearrangements), treatment with intensive regimens such as DA-EPOCH-R, R-HyperCVAD (rituximab, cyclophosphamide, vincristine, doxorubicin, dexamethasone) or R-CODOX-M/IVAC (rituximab, cyclophosphamide, doxorubicin, vincristine, methotrexate/ifosfamide, etoposide, high dose cytarabine) resulted in superior complete remissions and PFS compared to R-CHOP. A recent meta-analysis compared survival outcomes in patients with DHL treated with more aggressive regimens including R-HyperCVAD, R-CODOX-M/IVAC or R-EPOCH versus standard-dose regimens (R-CHOP) in the first-line setting. The median PFS for the R-CHOP, DA-EPOCH-R and other dose intensive regimens was 12.1, 22.2, and 18.9 months, respectively. DA-EPOCH-R significantly reduced the risk of progression compared with R-CHOP; however, OS was not significantly different across treatment approaches.

DA-EPOCH-R is being evaluated in a prospective phase II study of 52 patients with newly diagnosed with DLBCL or B-cell lymphoma unclassifiable with features intermediate between DLBCL and BL. All patients had a MYC gene rearrangement. BCL2 gene rearrangement and BCL2 overexpression were identified in 45% and 56% of patients respectively. Preliminary reports from this study showed that PFS and OS were 79% and 77% respectively for all patients, at a median follow-up of 14 months. PFS was 87% and 64% in cases that were FISH positive (double-hit) and IHC positive for BCL2 respectively.
Additional prospective studies are needed to evaluate the efficacy of DA-EPOCH-R as well as other regimens and stem cell transplantation strategies in patients with DHL. Alternative treatment strategies are needed to improve outcomes in this poor-risk patient population.

The standard of care for the treatment of patients with DHL with concurrent MYC and BCL2 gene rearrangements nor for DEL has not been established. R-CHOP is associated with inferior outcomes. DA-EPOCH-R, R-HyperCVAD (alternating with high-dose methotrexate and cytarabine) or R-CODOX-M/R-IVAC are used in NCCN Member Institutions for the treatment of DHL. HDT/ASCR is also done at some NCCN Member Institutions; however its role is not established. Currently, no data supports the use of one regimen over another in the setting of DEL, and clinical trials are needed.
References

156. Moskowitz C, Hamlin PA, Jr., Maragulia J, et al. Sequential dose-dense RCHOP followed by ICE consolidation (MSKCC protocol

Burkitt Lymphoma

BL is a rare and aggressive B-cell tumor typically involving extranodal disease sites. In the WHO Classification, three clinical variants of BL are described: endemic, sporadic, and immunodeficiency-associated BL. The endemic variant is the most common form of childhood malignancy occurring in equatorial Africa and the majority of cases are associated with Epstein-Barr virus (EBV) infection. Sporadic BL accounts for 1% to 2% of all adult lymphomas in the US and Western Europe, and can be associated with EBV infection in about 30% of cases. Immunodeficiency-associated BL occurs mainly in patients infected with HIV, in some posttransplant patients and in individuals with congenital immunodeficiency. A recent analysis from the NCI SEER database reported improved survival outcomes in patients with BL diagnosed during the last decade (N=1922; year of diagnosis 2002–2008). The 5-year survival estimate was 56% compared with 43% in patients diagnosed prior to 2002. Thus, durable remission may be possible in approximately 60% of patients with BL.

Diagnosis

Adequate immunophenotyping by flow cytometry analysis or immunohistochemistry (IHC) is needed to establish the diagnosis of BL. Flow cytometry analysis should include the following markers: CD5, CD10, CD19, CD20, CD45, TdT, and kappa/lambda. The IHC panel should include the following: CD3, CD10, CD20, CD45, TdT, Ki-67, BCL2, and BCL6. If immunophenotyping is performed using flow cytometry first, then IHC using selected markers (Ki-67 and BCL2) can supplement the findings from flow cytometry. EBV encoded RNA in situ hybridization (EBER ISH) may be useful to evaluate for EBV infection status in some cases.

The typical immunophenotype of BL is sIg+, CD10+, CD19+, CD20+, CD22+, TdT-, Ki67+ (>95%), BCL2-, BCL6+, and simple karyotype with MYC rearrangement. Translocations involving the MYC gene are detected in nearly all cases of BL. Most cases (80%) of classical BL are characterized by t(8;14) which results in the juxtaposition of MYC gene from chromosome 8 with the IgH region on chromosome14. Other variants with MYC rearrangements [t(8;22) or t(2;8)] are less common. Some cases of DLBCL are also associated with an overexpression of MYC. Therefore, establishing the diagnosis of BL can be challenging using routine cytogenetic analysis. FISH using a break apart probe or long segment PCR are more reliable for the detection of t(8;14) and its variants. Gene expression profiling also has been reported as an accurate, quantitative method for distinguishing BL from DLBCL. However, this technique is not yet recommended for widespread clinical use. Cytogenetic analysis (with or without FISH) for detection of t(8;14) or variants should be performed in all cases with evaluation of BCL2 or BCL6 gene rearrangements under certain circumstances.

The 2008 WHO lymphoma classification eliminates atypical BL. For cases without typical morphology or immunophenotype, a provisional category has been introduced, “B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and BL.” These are aggressive lymphomas with substantial heterogeneity in terms of morphology, immunophenotype, and genetic features. Survival outcomes in patients with these lymphomas are poor, with a median survival of 9 months (and a 5-year survival rate of only 30%) reported in a retrospective analysis (N=39). This group of lymphomas also includes cases that harbor both MYC and BCL2 (and/or BCL6) translocations, the so-called “double-hit” lymphomas. Such cases of “double-hit” lymphomas have a highly aggressive disease course with poor prognosis; case series have reported a median overall survival
OS) time of 4 to 6 months among patients with “double-hit" lymphomas. The optimal management of patients with “double-hit” or “triple-hit” (involving BCL6 translocation in addition to MYC and BCL2 translocations) lymphomas has not been identified. Further discussions concerning “double-hit” lymphomas are included under the section for DLBCL of the NCCN Guidelines for NHL.

Workup

The initial diagnostic workup includes a detailed physical examination (with special attention to the node bearing areas, liver and spleen) and CT scans of the chest, abdomen and pelvis. CT scan of the neck may be useful in certain cases. Adult patients with BL commonly present with bulky abdominal masses, B symptoms, and laboratory evidence of tumor lysis; in addition, bone marrow involvement (up to 70% of cases) and leptomeningeal CNS involvement (up to 40% of cases) may also be common findings at the time of diagnosis. Brain MRI may be useful under certain circumstances (e.g., if CNS involvement is suspected at time of diagnosis due to neurological signs or symptoms). PET or integrated PET-CT scans are not recommended for routine use, since it is unlikely that findings of PET or PET-CT would alter therapy for patients with newly diagnosed BL. If the treatment includes an anthracycline-containing regimen, cardiac evaluation with MUGA scan or echocardiogram is recommended, particularly for older patients.

Treatment Options

BL is curable in a significant subset of patients when treated with dose-intensive, multiagent chemotherapy regimens that also incorporates CNS prophylaxis. It is important to note that CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) or similar regimens are not considered adequate therapy for the management of BL. In a recent population-based analysis of data from patients with BL (HIV-negative BL; N=258) from a Swedish/Danish registry, CHOP (or CHOP with etoposide) regimens resulted in a 2-year OS of only 39% compared with approximately 70% to 80% with more intensive multiagent chemotherapy regimens. Thus, for patients with BL who can tolerate aggressive therapies, intensive multiagent chemotherapy may offer the best chance for durable disease control. About 60% to 90% of pediatric and young adult patients with BL achieve durable remission if treated appropriately. However, the survival of older adults with BL appears to be less favorable, compared with younger patients. Although the SEER database suggests that older adults (patients aged >40 years) represent about 60% of BL cases (with about 30% aged >60 years), this patient population is underrepresented in published clinical trials. It is preferred that patients with BL receive treatment at centers with expertise in the management of this highly aggressive disease.
Most contemporary regimens used in adult patients have been developed from the pediatric protocols, and include intensive multiagent chemotherapy along with CNS prophylaxis with systemic and/or intrathecal chemotherapy. Tumor lysis syndrome is more common in patients with BL and should be managed as outlined under “Tumor Lysis Syndrome” in the Supportive Care section of the Guidelines and Discussion.

CODOX-M (cyclophosphamide, vincristine, doxorubicin, high-dose methotrexate), alternating with IVAC (ifosfamide, etoposide and high dose cytarabine) is a highly effective regimen developed by Magrath et al. Both cycles included intrathecal chemotherapy (cytarabine or methotrexate) for CNS prophylaxis in addition to high-dose systemic cytarabine and methotrexate. In the updated results obtained with 4 cycles of CODOX-M/IVAC protocol given to previously untreated patients (n=55, BL or Burkitt-like lymphoma; n=11, DLBCL), the 1-year event-free survival (EFS) rate was 85%.

In an international phase II study, Mead et al established the value of a modified CODOX-M/IVAC regimen in adults with BL (N=52 evaluable). Low-risk patients (n=12) received modified CODOX-M (3 cycles) and high-risk patients (n=40) received modified CODOX-M and IVAC (alternating cycles for 4 cycles). In low-risk patients, 2-year EFS and OS rates were 83% and 81%, respectively, compared with 60% and 70%, respectively, for high-risk patients. The efficacy of the modified CODOX-M/IVAC regimen in high-risk BL (n=42) was confirmed in a subsequent trial, which reported 2-year progression-free survival (PFS) and OS rates of 62% and 64%, respectively. Modified CODOX-M regimen with or without alternating IVAC was also effective and well tolerated in older patients with BL or Burkitt-like lymphoma (n=14) and in patients with HIV-associated BL (n=8).

More recently, the addition of the anti-CD20 monoclonal antibody rituximab has been investigated in combination with CODOX-M/IVAC, given that most cases of BL are CD20-positive. In a small study that evaluated CODOX-M/IVAC with or without rituximab in patients with BL or B-cell lymphoma unclassifiable (N=15), the 5-year PFS and OS rates were 87% for both outcome measures. In a larger retrospective study in patients with BL (N=80) treated with CODOX-M/IVAC with or without rituximab, the 3-year EFS and OS rates with rituximab were 74% and 77%, respectively; the 3-year EFS and OS rates without the addition of rituximab was 61% and 66%, respectively. Although a trend for improvement in outcomes with the addition of rituximab was observed, the differences were not statistically significant.

The hyper-CVAD regimen (hyperfractionated cyclophosphamide, vincristine, doxorubicin and dexamethasone alternating with methotrexate and cytarabine, including intrathecal methotrexate) developed by the MD Anderson Cancer Center, has also been evaluated in patients with Burkitt-lymphoma/leukemia (N=26). With this regimen, complete remission (CR) was achieved in 81% of patients and the 3-year OS rate was 49%; OS rate was higher among patients aged 60 years or younger (77% vs. 17% for patients older than 60 years). In a phase II trial in HIV-negative patients with newly diagnosed BL or B-ALL (N=31), the addition of rituximab to the hyper-CVAD regimen (R-hyper-CVAD) induced CR in 86% of patients; the 3-year EFS and disease-free survival rates were 80% and 88%, respectively. The 3-year OS rates were similar among the elderly and younger patients (89% vs. 88%). In the updated report (n = 57; 30 patients non-HIV BL and 27 patients with B-ALL), with a median follow up of 62 months, the 5-year OS rate with R-hyper-CVAD was
The CALGB 9251 study evaluated the efficacy of intensive multiagent chemotherapy with and without cranial radiation for central nervous system (CNS) prophylaxis in adult patients with Burkitt leukemia or lymphoma. Given the severe neurotoxicity, the protocol was amended after the first 52 of 92 patients were enrolled. The 3-year EFS rate was 52% in the cohort of patients who received intensive CNS prophylaxis (cranial RT and 12 doses of triple intrathecal chemotherapy) compared to 45% in those who received only 6 doses of intrathecal chemotherapy and cranial irradiation (the latter for high-risk patients only). The subsequent CALGB 10002 study investigated the addition of rituximab and growth factor support to the above CALGB 9251 regimen, and without the use of prophylactic CNS irradiation. Among patients with previously untreated BL or Burkitt-like lymphoma/leukemia (N=103 evaluable), 82% achieved a CR and 7% had a partial remission (PR). The 4-year EFS and OS rates were 74% and 78%, respectively; as would be expected, these survival outcomes were more favorable among the subgroup of patients with low-risk IPI scores (4-year EFS and OS rates 86% and 90%, respectively) compared with those with high-risk IPI scores (55% and 55%, respectively).

A recent prospective study (30 patients with previously untreated BL) evaluated the standard dose-adjusted EPOCH with rituximab (DA-EPOCH-R) in HIV-negative patients (n = 19) and a lower-dose short-course regimen with a double dose of rituximab (SC-EPOCH-RR) in HIV-positive patients (n =11). At a median follow up of 86 months, the FFP and OS rates with DA-EPOCH-R were 95% and 100%, respectively. The highly favorable outcomes seen in this study may reflect the inclusion of more low-risk patients compared to other studies, with approximately 53% of all patients (37% in the DA-EPOCH-R group) presenting with normal LDH levels.

A prospective multicenter study from the German study group evaluated the efficacy and safety of a new short-intensive regimen combined with rituximab in patients with CD20-positive BL and Burkitt leukemia (N=363). The regimen comprised multiagent chemotherapy with high-dose methotrexate, high-dose cytarabine, cyclophosphamide, etoposide, ifosfamide and corticosteroids, combined with rituximab. Patients also received triple intrathecal therapy with methotrexate, cytarabine, and dexamethasone. Among the patients with BL (n=229), the CR rate with this regimen was 91%; at a median follow up of more than 7 years, the PFS and OS rates in the BL subgroup were 83% and 88%, respectively. Frequent grade 3 or 4 toxicities among patients with BL included neutropenia (64%), mucositis (31%), and infections (23%). These outcomes appear highly promising, with a manageable toxicity profile.

Several studies have evaluated the role of hematopoietic stem cell transplantation (HSCT) in patients with BL. The Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON) demonstrated the feasibility of intensive high-dose induction chemotherapy (prednisone, cyclophosphamide, doxorubicin, etoposide and mitoxantrone, without high-dose methotrexate or high-dose cytarabine) followed by
consolidation with BEAM and autologous HSCT in untreated adults with BL, Burkitt-like lymphoma, or B-ALL. Among the patients with BL/Burkitt-like lymphoma (n=27), CR was achieved in 81% of patients with a PR in 11%; the 5-year EFS and OS rates were 73% and 81%, respectively. In a recent analysis of outcomes with HSCT (autologous or allogeneic transplant) in patients with BL from the CIBMTR database (N=241), the 5-year PFS and OS rates with autologous HSCT at first remission were 78% and 83%, respectively. These outcomes with autologous HSCT were similar to findings from the above HOVON study, and appeared to compare favorably to the 5-year PFS and OS rates with allogeneic HSCT in first remission, which were 50% and 53%, respectively. Not surprisingly, patients who underwent HSCT with less than a first remission had poorer outcomes regardless of transplant type. The 5-year PFS and OS rates with autologous HSCT in those without a first remission were 27% and 31%, respectively; the corresponding rates with allogeneic HSCT without first remission were only 19% and 20%, respectively. For patients in a second remission, autologous HSCT resulted in a 5-year PFS of 44%. An earlier retrospective analysis from the CIBMTR database in patients with relapsed or refractory BL (children and adolescents age ≤ 18 years; n=41) showed similar 5-year EFS outcomes between autologous and allogeneic HSCT (27% vs. 31%). As would be expected, EFS rates were lower among patients who were not in CR at the time of transplant.

The management of patients with B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and BL, as well as those patients with “double-hit” B-cell lymphoma has not been well studied. Patients with “double-hit” lymphomas have very poor prognosis, with a median OS of only 4 to 6 months with chemotherapy combinations (e.g., CHOP, CODOX-M/IVAC, hyper-CVAD, EPOCH), with or without the incorporation of rituximab. Therefore, these patients are best managed in the context of clinical trials evaluating novel targeted agents.

NCCN Recommendations

Induction Therapy

Participation in clinical trials is recommended for all patients. As mentioned earlier, CHOP or CHOP-like therapy is not adequate for the treatment of BL. The NCCN Guidelines panel recommends the following regimens for induction therapy, which should also include adequate CNS prophylaxis with systemic and/or intrathecal chemotherapy with methotrexate and/or cytarabine:

- CALGB 10002 regimen
- CODOX-M/IVAC (original or modified) with or without addition of rituximab
- Dose-adjusted EPOCH with rituximab (DA-EPOCH-R)
- Hyper-CVAD with rituximab (R-hyper-CVAD)

Patients with CR to induction therapy should be followed up every 2 to 3 months for 1 year then every 3 months for the next 1 year and then every 6 months thereafter. Disease relapse after 2 years is rare following CR to induction therapy, and follow up should be individualized according to patient characteristics. Consolidation therapy in the context of a clinical trial may be considered for high-risk patients with CR to induction therapy. Patients with less than CR to induction therapy should be treated in the context of a clinical trial. In the absence of suitable clinical trials palliative RT may be considered appropriate.

Relapsed or Refractory Disease

Patients with relapsed or refractory disease should be treated in the context of a clinical trial. Second-line chemotherapy with rituximab-containing regimens followed by high-dose therapy and
autologous HSCT or allogeneic HSCT (if donor available) may be considered in selected patients with a reasonable remission duration following induction therapy. However, the treatment options remain undefined for patients who relapse after first-line therapy.

The guidelines have included DA-EPOCH-R, IVAC combined with rituximab (R-IVAC), R-GDP (gemcitabine, dexamethasone, cisplatin, combined with rituximab), R-ICE (ifosfamide, carboplatin, etoposide, combined with rituximab), and high-dose cytarabine as options for second-line therapy. However, it should be noted that these suggestions are based on very limited, retrospective studies with only a few patients. For instance, the R-ICE regimen was evaluated in a small group of pediatric patients with relapsed BL and B-ALL (n=14), which resulted in CR in 29% and PR in 36% of patients.37

The best options for patients requiring second-line therapy for relapsed/refractory disease are investigational treatments in the context of clinical trials. In the absence of suitable clinical trials or for patients unlikely to benefit from additional intensive multiagent chemotherapy regimens, best supportive care should be considered appropriate.
References

at: http://abstracts.hematologylibrary.org/cgi/content/abstract/ashmtg;118/21/2698.

AIDS-Related B-Cell Lymphoma

Overview

AIDS-related lymphoma is usually an AIDS-defining diagnosis in patients infected by the human immunodeficiency virus (HIV). Systemic lymphoma accounts for 70% to 90% of cases of HIV-associated lymphoma, while primary CNS lymphoma accounts for the remaining 10% to 30% of cases.\(^1\) The distribution of systemic versus primary CNS lymphoma (PCNSL) may vary depending upon differences in factors such as geographic regions, time period covered and referral patterns of the institutions, between published reports. Burkitt lymphoma (BL) and diffuse large B-cell lymphomas (DLBCL) are the most common forms of systemic HIV-associated lymphoma.\(^2,3\)

In systemic cases of HIV-associated lymphomas, the BL histology is generally associated with a higher CD4+ cell count at diagnosis compared with DLBCL; cases of PCNSL is associated with much lower CD4+ count levels relative to systemic cases.\(^1,2\)

Prior to the development of highly active antiretroviral therapy (HAART), HIV-associated lymphomas often presented with widespread, extra nodal disease, B symptoms, CNS involvement, and poor prognosis.\(^3\) With the routine use of combination antiviral therapy in the HAART era, the prognosis of patients diagnosed with HIV-related NHL has improved, primarily for those with systemic lymphomas. In an early assessment of the shift in prognosis of patients with HIV-associated lymphomas between the pre-HAART (1993-1994) and HAART (1997-1998) eras, median overall survival (OS) improved from approximately 6 months in the pre-HAART years compared with 21 months in the HAART era for patients with systemic lymphomas; patients with PCNSL, however, continued to have poor prognosis, with a median OS less than 3 months during both periods.\(^2\)

In a recent report from the COHERE (Collaboration of Observational HIV Epidemiological Research Europe) study evaluating outcomes of patients with HIV-associated lymphomas treated in the HAART era (1998-2006), the 1-year OS rates among patients with systemic lymphoma and PCNSL were 66% and 54%, respectively.\(^1\) Although survival outcomes appear to be improving with contemporary therapies, outcomes for patients with PCNSL remain poor. Moreover, survival rates for patients with HIV-associated lymphomas remain low compared with patients with lymphomas unassociated with HIV infection; in a recent study, the 2-year OS rate for patients with HIV-associated lymphomas treated in the HAART era (1996-2005) was 41% compared with 70% in lymphoma patients without HIV infections.\(^4\) Studies suggest that the improvement in prognosis observed with systemic HIV-associated lymphoma apply primarily to HIV-associated DLBCL but less to BL histology. In a study that investigated differences in outcomes by lymphoma histology and treatment era, median OS improved from 8 months (pre-HAART years: 1982-1996) to 38 months (HAART years: 1997-2003) among patients with HIV-associated DLBCL; contrastingly, OS outcomes remained poor (median 6 months to 5 months) during the same period among patients with HIV-associated BL.\(^5\) BL histology appears to be associated with poorer survival outcomes among patients with HIV-associated lymphoma, even in the HAART era.\(^4,5\)

Plasmablastic lymphoma (PBL) and primary effusion lymphoma (PEL) are two forms of lymphoma seen more commonly associated with HIV compared to lymphoma in patients without HIV infections. PEL accounts for less than 5% of HIV-associated lymphoma cases, most often occurring in the pleural, pericardial, and abdominal cavities.\(^6,7\) PELs are associated with human herpes virus 8 (HHV8) infection and many are also co-infected with Epstein Barr virus (EBV). PBL is
another unique large B-cell lymphoma that mainly involves the jaw and oral cavity of HIV-infected patients.8,9 Multicentric Castleman’s disease (MCD) is prevalent in HIV-infected individuals, and has also been associated with HHV8 infection and increased incidence of lymphoma in HIV infected patients.10

Diagnosis

The diagnostic evaluation of HIV-associated lymphoma is not different from the non-HIV-associated disease. The major factor is to distinguish between BL and DLBCL. Hodgkin lymphoma and indolent lymphoma are seen in patients with HIV infection at an incidence higher than in the general population, but are much less common than BL or DLBCL.

Workup

The diagnostic evaluation and workup are as outlined in the NCCN Guidelines section for BL. However, all patients (without regard to histology) should have a lumbar puncture to rule out CNS involvement. In addition, baseline values for CD4 counts and HIV viral load should be obtained.

Treatment

Optimal management of HIV-associated lymphoma is not established. However, several key factors have emerged as being important to improve outcome. In general, studies have demonstrated that early introduction of HAART therapy is associated with superior outcomes. This has allowed for the administration of more dose-intensive chemotherapy regimens and a reduction in treatment-associated toxicity.11-13

In prospective phase II studies, combination chemotherapy regimens such as CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) or CDE (cyclophosphamide, doxorubicin and etoposide) given with concomitant HAART,13-15 have proven to be active and tolerable in patients with HIV-associated lymphoma. The CHOP regimen has been shown to induce CR rates of 30% to 48%, with a median OS of approximately 25 months in patients with HIV-associated lymphomas.14-16 The CDE regimen from the ECOG 1494 study demonstrated a CR rate of 45% with a 2-year OS of 43% in patients with HIV-associated lymphomas.13 In a phase I/II study, combination therapy with CDOP (cyclophosphamide, liposomal doxorubicin, vincristine and prednisone) given with concomitant HAART showed high response rates (88% overall) in patients with HIV-associated lymphoma (N=24; DLBCL or variant in 79% of patients).17 Liposomal doxorubicin was given at doses ranging from 40 to 80 mg/m2, with fixed doses of the other three drugs. The CR rate with this regimen was 75%, and the median duration of CR was 16+ months; the OS rate at 1 year after start of therapy was 58%.17 Dose-adjusted EPOCH (etoposide, prednisone, vincristine, cyclophosphamide and doxorubicin) is another combination chemotherapy regimen that has been evaluated in patients with HIV-associated lymphoma. In a phase II study in previously untreated patients with HIV-associated NHL (N=39; 79% DLBCL; 18% BL), treatment with dose-adjusted EPOCH resulted in an ORR of 87% with a CR in 74% of patients.18 At a median follow up of 53 months, progression-free survival (PFS) and OS rates were 73% and 60%, respectively. Only 2 of the patients with a CR experienced disease recurrence at last follow up (for a disease-free survival [DFS] rate of 92%). OS outcomes were decreased among the patients with low baseline CD4 counts (\leq 100/mcL) compared with those with higher CD4 counts (16% vs. 87%). Multivariate analysis using a Cox proportional hazard model showed that low CD4 counts and CNS
involvement were the only significant factors associated with decreased OS.18

With the advent and wide availability of the anti-CD20 monoclonal antibody rituximab, the safety and efficacy of this immunotherapy agent in combination with chemotherapy has also been evaluated in clinical trials for patients with HIV-associated lymphomas. In the randomized phase III trial conducted by the AIDS Malignancies Consortium (AMC 010 study) in patients with HIV-associated NHL (N=150; 80% DLBCL; 9% BL), the addition of rituximab to CHOP (R-CHOP) was associated with improved CR rates (CR + unconfirmed CR [CRu]) compared with CHOP alone (58\% vs. 47\%); the median PFS was similar between treatment groups (10 months vs. 9 months) but both the median time to progression (29 months vs. 20 months) and OS (32 months vs. 25 months) were longer with R-CHOP.16 These outcomes were not significantly different between treatment arms, however, and the R-CHOP combination was associated with increased risks of serious infections (including infection-related deaths in 14\% of patients), particularly in patients with CD4+ counts of less than 50/mcL. It should also be noted that in this study, 35 patients randomized to the R-CHOP arm had received maintenance rituximab following initial R-CHOP.16 In subsequent phase II trials, 6 cycles of the R-CHOP regimen showed CR/CRu rates of 69\% to 77\% in patients with HIV-associated NHL (majority with DLBCL histology), with manageable toxicities.19,20 Infection-related deaths (regardless of attribution to study treatment) were reported in 2\% to 9\% of patients on these studies. In one study, the 2-year OS rate was 75\%.19 In the other study, the 3-year OS rate was 56\% and the 3-year DFS rate among patients with a CR (measured from the time of documented CR) was 77\%.20 Rituximab in combination with infusional CDE (R-CDE) was also shown to be feasible and effective with an acceptable toxicity level in patients with HIV-associated lymphomas. In a phase II study in patients with primarily HIV-associated DLBCL histology (N=74; 72\% DLBCL; 28\% BL), the CR rate with R-CDE was 70\% with a 5-year OS rate of 56\% and time-to-treatment-failure rate of 52\%; among patients with a CR (measured from the time of documented CR), the 5-year DFS rate was 81\%.21,22 Infection-related deaths occurred in 8\% of patients; 3\% were considered related to study treatment. Rituximab was also evaluated in combination with infusional CDOP (R-CDOP) with concomitant antiretroviral therapy in a recent multicenter phase II trial (AMC 047 study) in patients with HIV-associated NHL (N=40; DLBCL in 98\% of cases).23 The ORR was 67.5\% with a CR in 47.5\%. The 1-year PFS and OS rates were 61\% and 70\%, respectively; the 2-year PFS and OS were 52\% and 62\%, respectively. Infectious complications were reported in 40\% of patients (grade 4 in 5\%) but no infection-related deaths occurred.23 This may in part be explained by the fact that patients received concomitant HAART and those with low CD4 counts (\leq 100/mcL at baseline or during anti-tumor therapy) received antimicrobial prophylaxis. Factors such as decreased CD4 counts or increased HIV viral load did not appear to influence treatment response.23 These results with the R-CDOP regimen, however, appeared less favorable compared with the EPOCH regimen discussed earlier (74\% CR; 60\% OS at median 53 months follow up)18 or the EPOCH-R regimen (91\% CR; 68\% OS at median 5 years follow up),24 discussed below.

The CODOX-M/IVAC regimen (cyclophosphamide, doxorubicin and high-dose methotrexate, alternating with ifosfamide, etoposide and high-dose cytarabine) with or without rituximab, is commonly used in the management of patients with BL. Retrospective studies suggest that this regimen may be applicable in patients with HIV-associated BL cases.25,26 In a small retrospective analysis that included a subgroup of patients with HIV-associated BL treated with CODOX-M/IVAC (n=8), the CR rate was 63\% with a 2-year event-free survival rate of 60\%.26
In a recent retrospective study of CODOX-M/IVAC with or without rituximab in patients with BL (N=80), similar outcomes were observed between the subgroup of patients with HIV infection (n=14) and those without HIV infection (n=66). The CR rates among patients with and without HIV infection were 93% and 88%, respectively; the 3-year PFS rate was 68% for both subgroups, and the 3-year OS rate was 68% and 72%, respectively. This retrospective analysis also suggested that in the overall patient cohort, no significant differences in outcomes were observed with the addition of rituximab to CODOX-M/IVAC, although a trend toward improved 3-year PFS rate (74% vs. 61%) and OS rate (77% vs. 66%) with the addition of rituximab was noted. Among the small subgroup of patients with HIV-associated BL who received CODOX-M/IVAC with rituximab (n=10), 1 patient (10%) died due to a treatment-related infectious complication.

The EPOCH regimen in combination with rituximab (EPOCH-R) has been shown to be effective and tolerable in patients with HIV-associated lymphomas. In a study of dose-adjusted EPOCH with rituximab (DA-EPOCH-R) in patients with BL (N=23; including HIV-associated BL, n=8), the CR rate was 100% and both the PFS and OS rates at median 27 months of follow up was 100%. More recently, the EPOCH-R regimen was evaluated using a short course of EPOCH with dose-dense rituximab in patients with HIV-associated DLBCL (N=33). The CR rate with this regimen was 91%, and the PFS and OS rates were 84% and 68%, respectively, at a median follow up of 5 years. In this study, the addition of rituximab did not appear to cause serious infection-related complications or deaths. The AMC 034 randomized trial evaluated the use of the EPOCH regimen in combination with sequential versus concurrent rituximab in patients with HIV-associated lymphomas (N=106; 75% DLBCL; 25% BL, BL-like). The CR rate was 73% and 55% of patients in the concurrent (n=48 evaluable) and sequential (n=53 evaluable) arms, respectively; the 2-year PFS rate (66% vs. 63%) and OS rate (70% vs. 67%) were similar between treatment arms. Toxicity was comparable in the 2 treatment arms, although the concurrent regimen was associated with a higher incidence of treatment-related deaths among the patients with a baseline CD4+ count of less than 50/mcL. Overall, treatment-related deaths occurred in 5 patients (10%) in the concurrent arm (n=3 due to infections) and 4 patients (7%) in the sequential arm (n=3 due to infections). The authors concluded that concurrent EPOCH-R was an effective regimen for HIV-associated lymphoma, which merits further evaluation. The investigators from the aforementioned AMC trials (AMC 010 and AMC 034) recently conducted a pooled analysis that included patients with HIV-associated NHL treated in the R-CHOP or EPOCH-R protocols (N=150 total). The analysis was intended to evaluate patient/disease factors and treatment factors associated with outcomes. Factors such as low age-adjusted IPI score and baseline CD4 count 100/mcL or greater were significantly associated with improved CR rate, EFS and OS outcomes. Among the patients who were treated with concurrent EPOCH-R, both EFS and OS were significantly improved compared with R-CHOP (after adjusting for aaIPI and CD4 counts). The incidence of treatment-related deaths were higher in patients with low baseline CD4 counts (<50/mcL) compared with those with higher CD4 counts (37% vs. 6%; P<0.01). The hyper-CVAD regimen (hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone, alternating with high-dose methotrexate and cytarabine) with or without rituximab has also demonstrated high CR rates (64–92%) and a median OS of 12 months in patients with HIV-associated BL/leukemia and Burkitt-like lymphoma.

The treatment of relapsed or refractory HIV-associated lymphomas remains a challenge, with autologous HSCT being the only potentially curative strategy. A recent retrospective analysis evaluated outcomes
in patients with relapsed or refractory HIV-associated lymphoma treated with curative intent at AMC sites (13 sites, N=88). The lymphoma diagnosis was NHL in the majority of patients (89%; the remainder had Hodgkin lymphoma [HL]). The most commonly used second-line regimens were ICE (ifosfamide, carboplatin and etoposide, 39%), dose adjusted EPOCH (19%) and ESHAP (etoposide, methylprednisone, cytarabine and cisplatin, 12.6%). Among the subgroup of patients with NHL, the ORR was 31% and the 1-year OS rate was 37%. Patients with a BL histology (n=12) appeared to have the worse outcomes with an ORR of 17% (compared with 33% in non-BL NHL) and a 1-year OS rate of only 12% (compared with 41.5% in non-BL NHL; P=0.005). Among all patients (both NHL and HL), those with primary refractory disease (n=54) had significantly decreased ORR (24% vs. 56%; P=0.003) and decreased 1-year OS (31% vs. 59%; P=0.022) compared with those with relapsed disease. Baseline CD4 counts did not influence OS outcomes. Subsequent treatment with autologous HSCT was associated with improved 1-year OS (63% vs. 37%) compared with no transplant. However, for patients who experienced a response (CR or PR) after second-line therapy, no difference in 1-year OS was observed based on HSCT (87.5% with HSCT vs. 82% with no transplant). For patients with relapsed/refractory HIV-associated NHL who can tolerate curative treatment regimens, autologous HSCT may offer the best chance for disease control. Although this retrospective analysis suggests that some patients may experience durable remission without HSCT, longer follow up data are needed.

PBL was associated with a poor prognosis in the pre-HAART era. In the HAART era, prognosis has improved with the use of intensive chemotherapy regimens along with HAART. The outcome of the HIV-positive patients with PBL treated at the Memorial Sloan-Kettering Cancer Center was reported to compare favorably to reports in the literature. Among 6 patients treated with anthracycline-based multiagent chemotherapy in conjunction with HAART, 5 patients were alive and diseases free with a median follow-up of 22 months. However, only limited data exist on the treatment approach for patients with PBL.

PCNSL is associated with severe immunosuppression and an overall poor prognosis. In retrospective analyses, patients with PCNSL treated with HAART and RT had a more favorable outcome.

NCCN Recommendations

The NCCN Guidelines recommend the use of HAART and growth factor (e.g., G-CSF) support along with full-dose chemotherapy regimens. Any change in antiviral therapy should be made in consultation with an infectious disease specialist. Patients on antiretrovirals with persistently low CD4+ count of less than 50 to 100/mcL tend to have a poorer prognosis and higher risk of infection when being treated with rituximab-containing regimens. Therefore, omission of rituximab is strongly suggested for these patients due to the higher risk of serious infectious complications. CNS prophylaxis with intrathecal methotrexate is used at some NCCN institutions for all patients, whereas at other NCCN institutions, only the patients with HIV-associated DLBCL with selected high-risk features (e.g., involvement of 2 or more extranodal sites with elevated LDH, bone marrow involvement, or other high-risk site involvement such as epidural, testicular or paranasal sinuses) receive upfront prophylaxis.

Recommended treatment regimens for patients with HIV-associated BL include dose-adjusted EPOCH with rituximab (DA-EPOCH-R), CODOX-M/IVAC (with or without rituximab), CDE with rituximab, or hyper-CVAD with rituximab. Recommended treatment options for
patients with HIV-associated DLBCL include rituximab in combination with chemotherapy regimens such as dose-adjusted EPOCH, CDE or CHOP. The panel recommended DA-EPOCH-R as the preferred regimen for the treatment of HIV-associated BL and DLBCL. Patients with lymphoma associated with MCD and PEL can also be treated with the same regimens as described for patients with DLBCL. Since most cases of PEL are CD20-negative, the addition of rituximab to the chemotherapy regimen is not indicated.

The NCCN Guidelines recommend CODOX-M/IVAC, EPOCH or hyper-CVAD regimens for patients with PBL, with the realization that only limited data are available on the management of these patients at this time. High-dose methotrexate, RT or antiretroviral therapy can be considered for patients with PCNSL. Selected patients with good performance status receiving HAART may also be treated as per the NCCN Guidelines for Primary CNS Lymphoma.
References

Post-Transplant Lymphoproliferative Disorders

Post-transplant lymphoproliferative disorders (PTLD) are a heterogeneous group of lymphoid neoplasms associated with immunosuppression following solid organ transplantation (SOT) or allogeneic hematopoietic stem cell transplantation (HSCT). PTLD following autologous HSCT is very rare. The majority of PTLD following both allogeneic HSCT and SOT are of B cell origin, and are usually associated with the Epstein Barr virus (EBV). Although rare, PTLD of T cell or NK cell origin can also occur (EBV-associated in approximately 30% of cases), and tend to occur late (median 6 years post transplant in one series). EBV-negative PTLD has been shown to be a late serious complication of transplantation, and tend to occur later (>2 years) after SOT than EBV-positive disease. Gene expression profiling studies have shown that EBV negative PTLD are biologically distinct from their EBV associated counterparts. PTLD following HSCT are usually of donor origin, whereas PTLD following SOT are of recipient origin in the majority of cases, with a minority of donor derived cases that often involve the grafted organ.

The incidence of PTLD following allogeneic HSCT ranges from about 1% to 3% with a slightly higher incidence in patients who are recipients of cord blood transplant. The large majority of these PTLD occur early, within 6 to 12 months of transplant. The incidence of PTLD following SOT ranges from about 1% to 10% depending upon the type of organ transplant. Small bowel transplant appears to be associated with the highest incidence of PTLD, at about 20%. More than 50% of PTLD cases following SOT are diagnosed beyond 12 months from the time of transplant. The incidence of PTLD is generally higher among pediatric patients compared with adults.

Median survival following a diagnosis of PTLD (after SOT) ranges from about 10 to 32 months. Survival outcomes for PTLD occurring after allogeneic HSCT are poor.

Factors such as EBV and cytomegalovirus (CMV) serology status (of the recipient and the donor), age, type of organ transplant, type of immunosuppressive agents (likely correlated with degree of immunosuppression), and time from transplant, contribute to variations in the risks for developing PTLD. In patients undergoing allogeneic HSCT, factors associated with increased risks for PTLD included T-cell depletion of the allograft, unrelated or HLA-mismatched grafts, and anti-T-cell therapy (e.g., antithymocyte globulin [ATG] or anti-CD3 monoclonal antibody) for prophylaxis or treatment of graft-versus-host disease (GVHD). In recipients of SOT, factors associated with increased risks for PTLD included the type of organ transplant (e.g., highest risks in bowel, lung, heart/lung transplants), EBV serology mismatch (i.e., negative recipient/positive donor), CMV serology mismatch (i.e., negative recipient/positive donor), HLA mismatch, and anti-T-cell therapy (e.g., ATG or OKT3) for prevention or treatment of graft rejection. Moreover, the use of tacrolimus (compared with cyclosporin) as primary immunosuppressive therapy appeared to increase the risk of PTLD in SOT recipients. Although CMV disease has also been associated with risks for EBV-positive PTLD, the correlation between CMV infection and development of PTLD is unclear. In patients with PTLD following SOT, factors such as older age, poor performance status, elevated lactate dehydrogenase (LDH), organ dysfunction, multiple involved lymph nodes, and multi organ involvement were identified as prognostic factors for poorer survival.

The diagnosis and classification of PTLD can be challenging given the nonspecific clinical presentation, and heterogeneity in histopathologic
and immunophenotypic presentations. Moreover, subtypes of PTLD may overlap within the same individual. In the 2008 WHO classification, PTLD are classified into 4 major categories: early lesions, monomorphic PTLD, polymorphic PTLD and classical Hodgkin lymphoma (cHL) type PTLD. Early lesions typically develop within a year of transplantation and are more common in transplant recipients who are EBV naive. Early lesions consist of 2 histological subtypes, plasmacytic hyperplasia and infectious mononucleosis like PTLD. Monomorphic histologies appear to be the most common subtype of PTLD, and resemble one of the B-cell lymphomas (except for indolent lymphomas) or T-cell/NK cell lymphomas seen in immunocompetent individuals. EBV serology status can vary according to lineage; most monomorphic B-cell PTLD are EBV positive whereas most T-cell PTLD are EBV negative. Monomorphic B-cell PTLD most commonly resembles diffuse large B cell lymphoma (DLBCL), but some lesions, although less common, can resemble Burkitt lymphoma, plasma cell myeloma or plasmacytoma. Polymorphic PTLD is mostly EBV positive, and can be either polyclonal or monoclonal; this represents the most common type of PTLD among children. cHL-type PTLD is almost always EBV-positive, and is the least common of the PTLD categories.

Diagnosis

Histopathology and adequate immunophenotyping are essential to confirm the diagnosis of PTLD. Immunophenotyping should include both B-cell and T-cell (as well as NK cell) associated markers. Among B-cell PTLD, expression of BCL6, MUM1 and CD138 can be useful in distinguishing between the histological subtypes of PTLD. BCL6 expression was detected in cases of monomorphic PTLD (71% of centroblastic DLBCL), whereas it was consistently absent in polymorphic PTLD. MUM1 was preferentially expressed in 92% of polymorphic PTLD. Overall, BCL6–, MUM1+ and CD138– phenotype is associated most frequently with polymorphic PTLD; BCL6+, MUM1+/- and CD138– is mostly associated with monomorphic PTLD. The recommended panel for immunohistochemistry (IHC) includes the following markers: CD3, CD5, CD10, BCL6, BCL2, IRF4/MUM1, CD20, CD79a, PAX5, Ki67, and kappa, lambda light chains. Cell surface markers CD3, CD5, CD7, CD4, CD8, CD19, CD20, CD10, and kappa, lambda are recommended for flow cytometric analysis. Under certain circumstances, the following additional markers may be useful for an IHC panel: CD15, CD30, CD45, CD7, CD4, CD8, ALK, TIA-1, granzyme B, CD57, CD56, and CD138. In addition, the following markers for flow cytometry may also be useful under certain situations: CD138, CD30, CD57, CD56, CD16, CD25, CD52, and cytoplasmic kappa or lambda.

Evaluation of EBV infection status is another essential component of the diagnostic workup. EBV can be detected by either IHC for latent membrane protein 1 (LMP 1) or EBV encoded RNA in situ hybridization (EBER ISH). EBER ISH is more sensitive than immunohistochemistry, and is recommended if EBV-LMP-1 is negative. If immunostaining for EBV-LMP 1 is positive, EBER ISH is not required. Under certain circumstances, EBV evaluation by Southern blot may also be useful.

Immunoglobulin heavy chain (IGH) gene mutations are seen in the majority of B-cell PTLD cases, with the exception of early lesions. Genetic alterations in MYC, NRAS and TP53 are seen only in monomorphic PTLD. BCL6 mutations have been associated with shorter survival and poor response to therapy. In certain situations, molecular genetic analysis to detect IGH rearrangements and BCL6 gene mutations could be useful.
Workup

The initial workup for PTLD should include a physical examination and evaluation of performance status. Laboratory assessments should include standard blood work including CBC with differential and a metabolic panel (to include albumin, electrolytes, BUN, and creatinine), in addition to measurements of serum LDH levels. Bone marrow evaluations may be useful in selected cases. Prior history of immunosuppressive therapy should also be assessed. CT scans of chest, abdomen and pelvis should be performed. PET CT scan and brain MRI may be useful in selected cases. In addition, MUGA scan/echocardiogram may be useful in cases where treatment with anthracycline or anthracenedione-containing regimens is being considered. Hepatitis B virus (HBV) testing should be performed prior to initiation of treatment with immunotherapy (with or without chemotherapy) given the potential risks for viral reactivation with such regimens. Evaluation of EBV viral load by quantitative PCR can aid in the diagnosis as well as monitoring of treatment responses in patients with PTLD. Plasma or peripheral blood mononuclear cells (PBMC) are useful for measuring EBV viral load, although some studies have shown that viral load in plasma is more sensitive than PBMC in the diagnosis of PTLD. EBV serology to assess primary infection versus reactivation may be useful. As previously mentioned, CMV infection has also been associated with an increased risk of PTLD in EBV seronegative patients. Thus, PCR for the measurement of EBV and CMV can be useful for selected patients.

Treatment

While guidelines have been published, the optimal treatment for PTLD is not well defined due to the lack of randomized controlled trials and the heterogeneity of the disease. Published reports of treatment for PTLD have included reduction in immunosuppression (RI), use of antiviral agents, single-agent treatment with rituximab, chemotherapy, and/or chemoimmunotherapy regimens; treatment approaches are largely dependent on the PTLD subtype. In general, RI remains the initial step in the management of nearly all cases of PTLD. In a prospective phase II study that evaluated a sequential approach to therapy (i.e., RI first, then interferon-alfa for less than complete remission (CR), then multiagent chemotherapy if less than CR to interferon) for adults with PTLD following SOT (N=20; n=16 evaluable), RI alone resulted in only one partial remission (PR). The remaining patients experienced either disease progression or graft rejection. One patient achieved a CR with interferon, and among patients eligible for multiagent chemotherapy, 67% achieved a CR. Rituximab was not evaluated as part of this study. The role of antiviral therapy is controversial since the majority of PTLD are associated with latent EBV. Replicating EBV DNA has been reported in about 40% of EBV associated lymphoproliferative disorders in immunocompromised patients. Antiviral drugs targeting EBV replication may be beneficial in this subset of patients with early or polymorphic PTLD.

Several phase II studies and retrospective analyses have confirmed the efficacy of rituximab monotherapy in the treatment of patients with B-cell PTLD. In a prospective multicenter phase II study in patients with PTLD after SOT (N=46; n=43 evaluable), rituximab induced responses in 44% of patients (CR in 28%) with a 1-year overall survival (OS) rate of 67%. Another prospective multicenter phase II study demonstrated that extended treatment with rituximab (e.g., 2 courses of rituximab) induced a high rate of CR (60.5%; including patients treated with a second course) in patients with PTLD after SOT (N=38) without increasing toxicity. Among the patients who could not achieve a CR with rituximab alone and subsequently received rituximab combined with chemotherapy (R-CHOP or R-EPOCH; n=8), 6 patients achieved a
At a median follow up of 27.5 months, the event-free survival and OS rates were 42% and 47%, respectively. In a multicenter retrospective analysis of data from patients with PTLD following SOT (N=80), all patients had received initial RI, and 74% were treated with rituximab with or without chemotherapy. The 3-year progression-free survival (PFS) and OS rates for all patients were 57% and 62%, respectively. Inclusion of rituximab as part of initial therapy significantly improved both 3-year PFS (70% vs. 21%) and OS (73% vs. 33%) rates compared with the group who did not receive rituximab.

Anthracycline based chemotherapy with or without rituximab has also been effective in the treatment of patients with PTLD. In a retrospective analysis, CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) induced an overall response rate (ORR) of 65% (CR in 50%) in patients with PTLD after SOT (N=26) who were unresponsive to RI alone. With a median follow up of nearly 9 years, the median OS was 14 months. Treatment-related mortality rate was high, at 31%.

As mentioned above, rituximab with or without chemotherapy was shown to improve outcomes in patients with PTLD in a retrospective study. More recently, a prospective multicenter phase II study evaluated the role of sequential chemoimmunotherapy with rituximab (4 weekly doses) followed by CHOP-21 (4 cycles) combined with G-CSF in patients with PTLD who failed initial RI (N=74; n=70 evaluable). The large majority of patients presented with monomorphic histology (primarily DLBCL), and 44% of cases were EBV positive. The ORR with rituximab (n=70) was 60% (CR in 20%), which improved to 90% (CR in 68%) in the patients who received subsequent CHOP chemotherapy following rituximab (n=59). Median response duration has not yet been reached. The median PFS and OS were 4 years and 6.6 years, respectively; the 5-year PFS and OS rates were 50% and 55%, respectively. The most common grade 3 or 4 toxicities included leukopenia (68%) and infectious events (41%). Treatment-related mortality associated with CHOP was reported in 11% of patients. This trial was amended to introduce a risk-stratified treatment strategy based upon initial response to rituximab, whereby low-risk patients (defined as those achieving CR after initial rituximab) received consolidation with rituximab monotherapy and high-risk patients (defined as non-CR after initial rituximab) received chemoimmunotherapy with R-CHOP-21 (4 cycles) combined with G-CSF. Among the patients enrolled in the risk-stratified protocol (N=91; n=80 evaluable), the ORR was 93% (CR in 78%). The CR rate after initial rituximab alone was 27%. In this low-risk group (who subsequently received rituximab consolidation; n=23), the rate of relapse after a median follow up of more than 3 years was 13%. Among patients with progressive disease after initial rituximab (n=23), sequential therapy with R-CHOP resulted in CR in 65%; this CR rate was higher than that of patients with progressive disease (following initial rituximab) who received sequential CHOP in the original study protocol (CR in 27%). The 3-year OS with the risk-stratified approach was 70%, which compared favorably to the OS rate of 61% (although not statistically different) with the original protocol. This risk-stratified sequential treatment strategy spared the need for chemotherapy in low-risk PTLD patients, while incorporating a more effective chemoimmunotherapy regimen (R-CHOP) in high-risk patients.

Adoptive immunotherapy using autologous or allogeneic EBV specific cytotoxic T lymphocytes (EBV CTLs) has been investigated in several studies. In small studies, the use of autologous EBV-CTLs has been shown to prevent the occurrence of PTLD in SOT recipients who were...
considered at high risk for developing PTLD. In patients who underwent allogeneic HSCT, the use of allogeneic EBV-CTLs successfully prevented PTLD in all patients (N=39). In a subsequent study that evaluated the effectiveness of allogeneic EBV-CTLs in a larger series of patients (including those reported in the earlier Rooney et al, 1998 study) who underwent allogeneic HSCT (N=114), EBV-CTLs prevented PTLD in all patients (n=101) and induced a durable CR in 85% of patients in the subgroup with existing PTLD (n=13). This study also showed that during long-term follow up, functional EBV-CTLs persisted up to 9 years. A prospective multicenter phase II study evaluated allogeneic EBV-CTLs in the treatment of patients with PTLD that failed conventional therapy (N=33). The majority of patients (94%) had received SOT; the remaining patients had undergone allogeneic HSCT. All patients had RI as part of initial therapy for PTLD, and some patients had also received treatment with rituximab, anti-virals, or chemotherapy. The ORR at 6 months was 52% (CR in 42%). The OS rate at 6 months was 79%. Results from this study suggest that immunotherapy with EBV-CTLs may be a promising strategy in patients with PTLD who fail conventional treatments. However, further prospective studies are needed to better define the role of adoptive immunotherapy in the prevention and management of PTLD.

NCCN Recommendations

First-line Treatment and Initial Response

Treatment options for PTLD depend on the histological subtype and should be individualized. RI, if possible, should be a part of the initial treatment approach for all patients with PTLD. It should be noted that response to RI is variable, and patients should be closely monitored during RI. Importantly, RI should be initiated and managed in coordination with the transplant team in order to minimize risks for graft rejection.

For patients with early lesions, first-line management could involve RI alone. For patients who achieve a CR with this approach, re-escalation of immunosuppressive should be individualized, taking into account the extent of initial RI and the nature of the organ allograft; these decisions should be made in conjunction with the transplant team. EBV viral load can be monitored by PCR assays. Patients with early lesions who have persistent or progressive disease with RI alone should be managed with second-line therapy options (see section below).

For patients with localized polymorphic PTLD, treatment should include RI, if possible, along with RT with or without rituximab, surgery with or without rituximab, or rituximab alone. For patients with systemic polymorphic PTLD, the NCCN Guidelines panel recommends RI, if possible, along with rituximab alone or rituximab as part of a chemoimmunotherapy regimen (concurrent or sequential combination). In patients with (systemic or localized) polymorphic PTLD who achieve a CR with initial therapy, the patient should either be observed or continue RI (if possible) with or without rituximab maintenance. Patients who have persistent or progressive disease with initial therapy should be managed with second-line treatment options (see section below).

The treatment approach for patients with monomorphic PTLD should be based on the standard treatment regimens used for the unique histology. The treatment options include RI, if possible, and/or rituximab alone or rituximab as part of a chemoimmunotherapy regimen (concurrent or sequential regimen); rituximab alone should only be considered as part of a step-wise approach to treatment in patients who are not highly symptomatic or in those who cannot tolerate chemotherapy due to comorbid conditions. Patients who achieve a CR with initial therapy should undergo surveillance/follow up according to the Guidelines specific for the histology. Patients who have persistent or
progressive disease with initial therapy should be managed with second-line treatment options (see section below).

Second line Treatment
Treatment options in the second-line setting are dependent on the response to initial treatment and the histological subtype. For patients with early lesions who have persistent or progressive disease with RI alone, rituximab is recommended as second-line therapy.

For polymorphic PTLD, chemoinmunotherapy or EBV CTL infusion (if EBV positive) are included as options for patients who experience persistent or progressive disease with initial therapy. Participation in a suitable clinical trial, where available, should also be considered in this setting.

For patients with monomorphic PTLD with persistent or progressive disease with initial therapy, second line treatment options are dependent on prior therapy. Rituximab or chemoinmunotherapy regimens are options for patients who received RI alone as initial treatment, whereas patients who received single-agent rituximab as initial therapy should be treated with chemoinmunotherapy. In both situations, other options include participation in a suitable clinical trial, if available, or incorporation of EBV CTL infusion (if EBV positive).
References

15. Chadburn A, Suciu-Foca N, Cesarmann E, et al. Post-transplantation lymphoproliferative disorders arising in solid organ transplant recipients...
B-cell Lymphomas

Transplant Proc 2000;32:1213. Available at: [Link to PubMed].

84. Rooney CM, Smith CA, Ng CY, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in
