ACADEMY ’06 MEETING
American Academy of Dermatology
San Diego, CA

Forum #506
CUTANEOUS T-CELL LYMPHOMA
July 27, 2006

Youn H. Kim, MD
Uma Sundram, MD, PhD
CTCL Update

- **Clinical Features**
 - Clinical clues for diagnosis, staging and prognosis
 - *Youn Kim, Professor of Dermatology, Stanford University School of Medicine*

- **Pathology**
 - Histopathologic diagnosis, role of IHC/molecular techniques
 - *Uma Sundram, Assistant Professor of Pathology & Dermatology, Stanford University School of Medicine*

- **Therapy**
 - Topical, systemic, combined modality, and investigative therapies
 - *Youn Kim*
Therapy Updates
in Cutaneous T-cell Lymphoma

Youn H. Kim

Department of Dermatology
Multidisciplinary Cutaneous Lymphoma Group
Stanford University School of Medicine
<table>
<thead>
<tr>
<th>New WHO-EORTC Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycosis fungoides and variants/subtypes</td>
</tr>
<tr>
<td>Sézary syndrome</td>
</tr>
<tr>
<td>PC CD30+ lymphoproliferative disorders</td>
</tr>
<tr>
<td>Subcutaneous panniculitis-like T-cell lymphoma</td>
</tr>
<tr>
<td>Extranodal NK/T-cell lymphoma, nasal type</td>
</tr>
<tr>
<td>Adult T-cell leukemia/lymphoma</td>
</tr>
<tr>
<td>PC peripheral T-cell lymphoma, unspecified</td>
</tr>
<tr>
<td>Aggressive epidermotropic CD8+ T-cell lymphoma</td>
</tr>
<tr>
<td>Cutaneous γ/δ T-cell lymphoma</td>
</tr>
<tr>
<td>PC CD4+ sm/med-sized pleomorphic T-cell lymphoma</td>
</tr>
<tr>
<td>PTCL, other</td>
</tr>
</tbody>
</table>
Current and Investigative Therapies
Goals of Therapies for CTCL

IDEAL
- Cure
- Extend Life
- Alleviate symptoms
- Durable response
- High response rate

REAL
- Alleviate symptoms
- Variable response
- Variable response duration
- Extend Life
- Cure
Treatment Alternatives in MF/SS (CTCL)

- **Topical (skin-directed) therapy**
 - Topical steroid, nitrogen mustard, topical retinoid (Targretin*), BCNU, phototherapy (UVB/PUVA), EBT, topical imiquimod

- **Systemic therapy**
 - Biologicals
 - photopheresis*, interferon, retinoid (Targretin*), fusion protein/toxin (Ontak*)
 - Cytotoxic chemotherapy
 - MTX, Doxil, gemcitabine, etoposide, pentostatin, combination regimens

- **Combined modality therapy**
 - Topical + topical, topical + systemic, systemic + systemic

- **Investigative therapy**
 - Monoclonal antibodies (e.g., CD3, CD4, CD30, CD52)
 - HDAC inhibitors (e.g., depsipeptide, SAHA)
 - PNP inhibitors
 - Cytokines (e.g., rhIL12)
 - Immunostimulatory oligonucleotides (e.g., CpG 7909)
 - Allo-HSC transplantation
Management of MF/SS

• Treatment Selection Factors
 – Clinical stage***
 – Other prognostic factors
 • follicular, LC transformation, etc.
 – Response rate/speed/duration
 – Side effect profile
 • pt age, co-morbidities
 – Accessibility of treatment options
 – Cost-benefit ratio
 – Other social and medical issues
Treatment Approach in Mycosis Fungoides & Sézary Syndrome

IA
- Limited dz, T1
 - Top steroids, Targ gel
 - NM

IB/IIA
- Generalized, T2
 - PUVA ± Targ or IFN
 - TSEBT ± NM, Targ or IFN (or ECP)

IIB
- Tumors, T3
 - Targ ± IFN, Ontak
 - Investigative/Newer Therapies (TLRA, MoAb, cytokine, HDAAI, PNPI, IMiD, vaccine, allo-HSCT)

III
- Erythroderm, T4
 - ECP ± Targ, IFN
 - Single-agent Chemo (Mtx, Doxil, Gem, Pento)

IV
- Extracut. dz
 - Combination Chemo
 - Campath
Management of Stage IA Disease (Limited Patch/Plaque, T1)

- **MS not attained; DPR <10%
 - Primary therapy is topical (skin-directed)
 - Topical steroid, nitrogen mustard (mechlorethamine), BCNU, topical retinoid (Targretin gel)
 - UVB (narrow-band better) for patch-type disease, PUVA
 - Localized radiation (electron beam) therapy for unilesional MF, compromised locations, or refractory lesions
 - CR >70%, RR >90%
Topical Steroid Therapy

• Clinical indications
 – Primary therapy for limited disease
 – Combination therapy with other skin-directed treatments

• Clinical response

 – T1, RR 94% w/ CR 63%, best response w/ class I steroid
 – More effective and appropriate for patch or thin plaque disease

• Toxicity of long-term use of high-potency topical steroid
TOPICAL NITROGEN MUSTARD

• VEHICLE
 • Aqueous
 • Aquaphor
 • Propylene glycol
 (FDA OPD grant study)

• SURFACE
 • Total skin
 • Regional
 • Lesional

• CONCENTRATION
 • Increase effectively
 • Clear efficiently

• TIMING
 • Primary
 • Adjuvant
 • Combination

• MAINTENANCE
 • Short over long
TOPICAL NITROGEN MUSTARD as a primary therapy

Kim et al. Arch Dermatol 2003;139:165-73

<table>
<thead>
<tr>
<th>T Classification</th>
<th>No. of Patients</th>
<th>Response</th>
<th>CR (%)</th>
<th>PR (%)</th>
<th>NR (%)</th>
<th>CR+PR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>107</td>
<td></td>
<td>70 (65)</td>
<td>30 (28)</td>
<td>7 (7)</td>
<td>100 (93)</td>
</tr>
<tr>
<td>T2</td>
<td>88</td>
<td></td>
<td>30 (34)</td>
<td>33 (38)</td>
<td>25 (28)</td>
<td>63 (72)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>195</td>
<td></td>
<td>100 (51)</td>
<td>63 (33)</td>
<td>32 (16)</td>
<td>163 (84)</td>
</tr>
</tbody>
</table>

Excludes patients on sig. concurrent or preceding therapy
Adverse Effects of Topical NM Therapy

• Contact dermatitis less common w/ ointment-based prep
 – Irritant (~25%) > allergic (<10%) contact dermatitis
 – Majority can be desensitized by reduction in strength w/ build-up
 – Pts w/ brisk contact reactions may have earlier CR

• Less than 5% discontinued ointment-based HN2 due to greasiness
 – Most switched to aqueous or PG prep but still cont. therapy

• Safe in pediatric group w/o evidence of systemic absorption

• Secondary cutaneous malignancies
 – No support for increased skin cancers if used as monotherapy on non-genital skin
 – Increased incidence of squamoproliferative lesions in patients treated with multiple skin-directed therapies (e.g., PUVA, radiation)

Multicenter trial ongoing for FDA approval
Ovation reimbursement line 1-866-209-7604
Targretin Gel 1%

- Clinical indications in MF/CTCL
 - Topical treatment of refractory or persistent lesions after other therapy failures
 - Can be considered as primary therapy in limited disease (stage IA), either as monotherapy or as part of combination therapy
Targretin Gel 1%

• Administration
 – Start application every other day then build up to BID at weekly intervals only as tolerated

• Clinical response
 Heald et al. JAAD 2003;49:801-15
 – Stage IA: RR 60% in phase III trial, RR is higher in treatment naïve patients
 – Minimum treatment duration of 2-3 months to assess objective response
 – Better disease assessment off treatment

• Adverse effects
 – Common topical retinoid skin reactions
Management of Stage IB/IIA Disease (Generalized Patch/Plaque, T2)

- MS 11-12 yrs; DPR 20-30%

- Primary therapy is topical (skin-directed)
 - Topical steroid, nitrogen mustard (NM), BCNU, PUVA
 - UVB reserved for patch-type disease (narrow-band more effective)

- Topical therapy failures or severe plaque disease
 - Biologic therapy: systemic retinoid, IFN, Ontak
 - Combination therapy
 - PUVA + systemic retinoid and/or IFN, IFN + systemic retinoid, Targretin + Ontak
 - TSEBT can be considered as initial therapy for effective/efficient control of severe, symptomatic disease
 - TSEBT +/- NM +/- systemic retinoid or IFN

- CR 45-90%, RR >75%:
Management of Stage IB/IIA Disease (Generalized Patch/Plaque, T2)

- CR 45-90%, TR >75%:

<table>
<thead>
<tr>
<th></th>
<th>CR</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HN2</td>
<td>45-70%</td>
<td>75-90%</td>
</tr>
<tr>
<td>PUVA</td>
<td>50-80%</td>
<td>85-95%</td>
</tr>
<tr>
<td>TSEBT</td>
<td>80-90%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- PUVA may induce long-term remissions
 Querfeld et al. Arch Dermatol 2005;141:305-11
 - DFS at 5 and 10 years for IB/IIA, 74% and 50%
 - Need to balance benefit vs. photodamage risk w/ prolonged therapy

- Narrow-band UVB effective, well-tolerated, convenient for patch/thin plaque disease (Gathers, Lim et al. JAAD 2002;47:191-7)

- No long-term survival advantage for patients treated with TSEBT over nitrogen mustard
Total Skin Electron Beam Therapy

- Generalized thick plaques/tumors w/ severe symptoms
- Total ~36 Gy given over ~10 wks with 1 wk split after 18-20 Gy
- “Shadowed” areas may need supplemental tx
- Most effective single therapy
- Adverse effects: erythema, desquamation, alopecia, loss of nails, inability to sweat
- Adjuvant or combined therapy with topical nitrogen mustard, PUVA, or retinoids, IFN
Retinoid X Receptor (RXR) Ligands (Rexinoids)
Targretin® (bexarotene)

- Systemic biologics when skin-directed therapies fail or present with severe dz or other worse px features (LC transformation, folliculocentric dz)
- FDA-approved in 12/99 for treatment of CTCL
Targretin® (bexarotene)

Molecular Activity

RXR-NHR heterodimer

<table>
<thead>
<tr>
<th>RAR</th>
<th>PPAR</th>
<th>TR</th>
<th>VDR</th>
</tr>
</thead>
</table>

Regulation of Gene Networks

Cell Cycle Control
(Regulation of Cyclins and Cdk-Inhibitors)

Apoptosis
(Regulation of Cell Death Genes)

Differentiation
(Adipogenesis, Epithelial Cell Maturation)

Immunologic effects
(Blocks activated T-cells, cytokines)
Targretin (Bexarotene)

• Administration
 – Starting dose of 100-300 mg/M2/d, depending on disease severity and/or risk for retinoid toxicity
 – Target dose of 300 mg/M2/d, but can increase to higher dose if tolerated

• Clinical response
 – At 300 mg/M2/d dose, TR ~50% (CR <10%)
 – Minimum treatment duration of 2-3 months to assess objective response

Phase 2-3 early stage, Arch Dermatol 137:581, 2001
Phase 2-3 advanced stage, J Clin Oncol 19:2456, 2001
Targretin (Bexarotene)

• Adverse effects
 – Mostly reversible, dose-related
 – Common retinoid skin and general effects
 – Hyperlipidemia (TG!)
 • Risk of pancreatitis if TG > 800 mg/dL
 • Lipitor, Tricor (do NOT use gemfibrozil)
 • Fasting lipids at baseline, weekly until stable, q2-4 wks
 – Hypothyroid (central axis alteration, do not follow TSH)
 • Thyroid replacement
 • FT4 at baseline, q4 wk until stable, q12 wk

Start lipid-lowering agent and synthroid 1 wk prior to initiation of Targretin
Targretin (Bexarotene)

- **Adverse effects**
 - Leukopenia (1K to < 3K WBC/mm³) or anemia
 - Adjust Targretin dose as needed or use stimulating factors
 - CBC at baseline, q4 wk
 - Hepatic effects, <10%
 - LFTs at baseline, q4 wk
 - Cataracts
 - Relationship to drug unclear
 - Baseline eye exam, f/u q3-6 mo
Comparing L-ATRA With Bexarotene
RAR vs RXR Retinoids

• Similar response rates with oral L-ATRA (12%) and bexarotene (21%) monotherapy in relapsed MF/Sézary syndrome
 – RAR agonists with less lipid problems and no central axis thyroid suppression

Denileukin Diftitox, Ontak®

- Fusion protein technology to kill defined neoplastic cells
 - IL-2-diphtheria toxin fusion protein (denileukin diftitox)
- FDA approved 2/1999 for CTCL patients whose malignant cells express CD25 component of IL-2 receptor
Fusion gene formed by fusing Diptheria toxin’s enzymatic and translocation functions to human IL-2
ONTAK® Mechanism of Action

HIGH affinity IL2 receptor

MEDIUM affinity IL2 receptor

Cleavage & Toxin release

Protein synthesis
Terminated by toxin-mediated ADP ribosylation of elongation factor 2

Protein synthesis

Internalization of IL2R with bound toxin

Cell exterior

Cell membrane

Cell interior
Interleukin-2-diphtheria Toxin Fusion Protein (Ontak, denileukin diftitox)

• Administration
 – Daily IV infusion x 5 days, every 3 wks (used in clinical trials)
 • Alternatively, daily IV infusion x 5 days (loading), then once weekly infusions
 – 9-18 µg/kg/d
 – Recommend slower infusion over 1 hour (vs. 15 min in clinical trials)

• Clinical response
 – CR 10(9-11)%, PR 20(14-25)%, TR 30(23-36)%

Phase III trial, J Clin Oncol 19:376, 2000
Interleukin-2-diphtheria Toxin Fusion Protein (Ontak, denileukin diftitox)

- **Adverse effects**
 - Generally, not dose-related
 - Constitutional symptoms (flu-like syndrome)
 - Acute hypersensitivity-type reactions, minimized by slower infusions
 - Vascular leak syndrome, reduced by hydration +/- steroids
Proposed Mechanism for Targretin®- mediated Increase in CTCL Cell IL2R

- Basal activity of the IL-2R α promoter is repressed by a negative regulatory element (NRE) which is controlled by retinoid receptors.

- Retinoids can relieve the repression and increase basal expression of both IL2R α and β.

- Targretin increases IL2R α and β expression in CTCL cells.

- Targretin increases CTCL sensitivity to ONTAK > 10 fold (from 5 nM to 0.3 nM).
Management of Stage IIB Disease (Cutaneous Tumors, T3)

• MS 3.2 yrs

• Few discrete tumors
 – Regimen for stage I disease + local RT (EBT) for tumors

• Generalized tumors
 – TSEBT + NM +/- biologic therapy (systemic retinoid, or IFN), PUVA + IFN and/or systemic retinoid, IFN + systemic retinoid, Targretin + Ontak
 – Single-agent chemotherapy (Doxil, MTX, gemcitabine)

• CR 33-75%, RR >80%
Management of Stage III Disease (Erythrodermic, T4)

- MS 3.7 yrs

- Often very inflamed, itchy skin; easily irritated with standard topical therapies

- Primary mono-therapies: ECP, PUVA, IFN, systemic retinoid (Targretin), methotrexate

- Combined therapies: ECP + IFN and/or systemic retinoid (Targretin), PUVA + IFN and/or systemic retinoid (Targretin), IFN + systemic retinoid (Targretin), Targretin + Ontak

- TSEBT can be considered as a component of combination therapy if patients have very thick diffuse skin involvement (esp. with secondary tumor nodules)

- Salvage therapies include pred/chlorambucil, Doxil, gemcitabine
Extracorporeal photopheresis (ECP)

- FDA-approved for “palliative treatment of patients with refractory CTCL” 3/88
 - **Primary therapy** for erythrodermic (T4) MF and SS
- **Mechanism of action**
 - leads to augmentation of systemic anti-tumor responses
- **Initiate at q2-4 wks, grad. decrease frequency after max. response**
- **If no significant response after 3-6 months, can add other therapies as combined modality regimen (e.g., IFN, Targretin)**
- **RR 50-70% (CR 20-25%)**
Mechanism of ECP in MF/SS (CTCL)

Edelson, PNAS 2001;941:1-11
Management of Stage IV Disease (Extracutaneous)

• MS <1.5 yrs

• Patients with T4 skin presentation (+/- SS) can be managed with ECP + second biologic (IFN, retinoid) therapy
 - Single agent chemo as salvage therapy

• Combination chemotherapy regimens as primary therapy is most appropriate in non-T4, stage IV patients for control of extracutaneous disease

• Adjuvant/comb therapy with biologic and skin-directed therapies

• BM or HSC transplantation

• Investigative therapies
Systemic Therapies for CTCL

<table>
<thead>
<tr>
<th>Therapy</th>
<th>RR%</th>
<th>Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECP*</td>
<td>50-70</td>
<td>IV</td>
</tr>
<tr>
<td>IFN-α</td>
<td>50-60</td>
<td>SC</td>
</tr>
<tr>
<td>Targretin*, ATRA</td>
<td>50-60</td>
<td>Oral</td>
</tr>
<tr>
<td>Ontak*</td>
<td>25-40</td>
<td>IV</td>
</tr>
<tr>
<td>Pentostatin</td>
<td>35-70</td>
<td>IV</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>60-75</td>
<td>IV</td>
</tr>
<tr>
<td>Doxil</td>
<td>80-85</td>
<td>IV</td>
</tr>
<tr>
<td>Campath-1H</td>
<td>55 (phase II, n=22)</td>
<td>IV</td>
</tr>
<tr>
<td>Oral etoposide</td>
<td>limited published reports</td>
<td></td>
</tr>
<tr>
<td>Methotrexate</td>
<td>35-70</td>
<td>Oral, IM, IV</td>
</tr>
<tr>
<td>Chlorambucil</td>
<td>limited published reports</td>
<td>Oral</td>
</tr>
</tbody>
</table>

Individulize therapy regimen
Combination Therapy

Benefit of potential synergy and less of each toxicities

When single agents fail or w/ aggressive dz

- **Combinations of skin-directed therapies**
 - NM + topical steroid or retinoid
 - Phototherapy + topical steroids or retinoid

- **Skin-directed + systemic therapy options**
 - PUVA + IFN and/or systemic retinoid and/or ECP
 - TSEBT + IFN and/or systemic retinoid and/or ECP

- **Combinations of systemic therapies (+/- secondary topical)**
 - IFN + systemic retinoid
 - ECP + IFN and/or systemic retinoid
 - Targretin + Ontak
 - Systemic chemotherapy + biologic therapy
Treatment Approach in Mycosis Fungoides & Sézary Syndrome

IA
- Limited dz, T1
- Top steroids, Targ gel
- NM

IB/IIA
- Generalized, T2
- PUVA ± Targ or IFN
- TSEBT ± NM, Targ or IFN (or ECP)

IIB
- Tumors, T3
- Targ ± IFN, Ontak

III
- Erythroderm, T4
- ECP ± Targ, IFN
- Single-agent Chemo (Mtx, Doxil, Gem, Pento)

IV
- Extracut. dz
- Combination Chemo
- Campath

Investigative Therapies
- (TLRA, MoAb, cytokine, HDAI, PNPI, IMiD, vaccine, allo-HSCT)
Management of Non-MF/SS CTCLs
Non-MF/SS Cutaneous Lymphoma T-classification

Staging System for MF/SS does not apply

- Extent and distribution of primary cutaneous involvement

 \(T1 \) solitary skin involvement

 \(T2 \) regional skin involvement

 \(T3 \) multifocal or generalized skin involvement
Treatment strategy in non-MF/SS CTCLs

CTCLs with indolent clinical behavior

Solitary or regional (T1-2) \(\leftrightarrow \) multi-focal/generalized (T3)

- Localized therapies
 - radiation
 - topical/intralesional

- Systemic therapies
 - biologic (MoAb, retinoids, IFN, Ontak)
 - chemotherapy

CTCLs with aggressive behavior (e.g., \(\gamma/\delta \) TCL, NK/T-cell)

- Often start with combination chemotherapy regardless of initial tumor burden/distribution
- Auto or allo HSC transplantation
CD30+ Lymphoproliferative Disorders

Treatment

- **LyP**
 - Limited number of lesions: no therapy or topicals
 - Extensive or symptomatic lesions: PUVA, MTX, oral retinoid (Targretin), anti-CD30 MoAb

- **PC ALCL**
 - Solitary/regional (T1-2a) disease
 - XRT, excision, or both
 - Generalized/multi-focal (T3) or extensive limb (T2b) disease
 - Biologics – oral retinoid (Targretin), Ontak, anti-CD30 MoAb
 - Systemic chemotherapy – MTX, oral etoposide, CHOP, other
 - High-dose chemotherapy with autologous PBSC transplantation
 - Supplemental XRT
Phase II Multi-Dose Study of SGN-30 (anti-CD30 mAb) in PC ALCL, LyP, and LC Transformed MF

- Chimeric form of a novel murine mAb w/ specificity for CD30, unique from other anti-CD30 Ab
 - SGN-30 binding is detected specifically on activated T-cells and not observed in other normal human tissues
- Earlier studies of SGN-30 in HD and non-cutaneous ALCL show great tolerability to IV therapy
- Multi-center phase II trial in CD30+ LPD (pc ALCL/LyP) and CD30+ LCT-MF
 - 12 mg/kg q2-3 wks x 6 doses, total 1-3 courses
Promising Investigative Therapies

Monoclonal antibodies
HDAC Inhibitors
PNP Inhibitors
Recombinant cytokines
TLR Agonists
(CpG ODNs)
New IMiDs
(lenalidomide)
Vaccine therapies
Allogeneic HSCT
Targeted Monoclonal Antibody Therapy

Fully Human Anti-CD4 MoAb (HuMax-CD4) in MF/SS

- Cytotoxic and anti-proliferative effect in treated patients mediated by ADCC
 - Depletes CD4+ T-cells
- Phase II multi-center trial with once weekly IV dosing of 280 mg, 560 mg, or 980 mg (Genmab)
 - Dose-dependent responses, 9-75%

Ongoing Pivotal Multicenter Trial of HuMax-CD4 in MF
TLR Agonist, CPG oligodeoxynucleotide (ODN)

- CPG 7909 is a synthetic form of DNA-like molecule, optimized for stimulation of human immune functions
- Ongoing trials in solid tumors, melanoma, lymphomas
- Rationale for CPG 7909 investigation in CTCL
 - Directly activate B-cells, pDCs → potent stimulator of innate and tumor antigen-specific adaptive immunity
 - Induces secretion of cytokines/chemokines → ↑Th1-like environment
 - ↑IL12 production, IFN-α → NK-cell activation
 - Augment IL12 response by increased production of IP-10, essential for IL12 mediated tumor-specific CD8+ T-cell responses
Toll-like receptors (TLRs) are PAMP-specific:
- TLR2 – Proteoglycans (bacteria)
- TLR3 – dsRNA (RNA viruses)
- TLR4 – Endotoxin/LPS (gram negative bacteria)
- TLR5 – Flagellin (bacteria)
- TLR6 – Proteoglycans (bacteria)
- TLR7 – ssRNA (viruses; bacteria)
- TLR8 – ssRNA (viruses; bacteria)
- TLR9 – ssCpG DNA (bacteria)

Bacterial DNA has many CpG: ACGTTGAGTTCGTACGCGATAACGGA

Vertebrate DNA has few CpG and they are methylated: AGCTTGAGT CCmCGGATGGGGTAAGA

Synthetic unmethylated CpG ODN, mimics bacterial DNA => TLR9
- directly activates DCs and B cells
- indirectly activates other immune cells
B cell

Innate Immunity
- TLR9
- Increased sensitivity to antigen
- IL-6
- IL-10
- Other cytokines / chemokines: IP-10, MIP-1α/b, MCP-1, IL-8
- Increased MHC

Adaptive Immunity
- Increased Ab secretion
- IL-6
- IL-10
- IFN-γ, IP-10, TRAIL
- IFN-γ, IL-12
- Other cytokines / chemokines: IP-10, MIP-1α/b, MCP-1, IL-8

Cells Involved
- NK cell, monocytes
- B cell
- pDC
- T cell
- CTL

Pathway
- CPG 7909 activates B cells, which then secrete IL-6 and IL-10, leading to increased Ab secretion. B cells also upregulate MHC expression.
- pDCs, which express TLR9, are activated, leading to increased MHC expression and secretion of IFN-α, TNF-α, and IL-12.
- These cytokines stimulate NK cells and monocytes, leading to the secretion of IFN-γ, IP-10, and TRAIL.
- NK cells and monocytes then act on T cells, which are further activated by IFN-γ and IL-12, leading to increased Ab secretion.
Phase I/II study in MF/SS with CPG 7909

- CPG 7909 has significant anti-tumor activity in CTCL as single agent immunotherapy (weekly SC injections)
 - Clinical anti-tumor responses begin within a few weeks and reach best response of PR (6/28) or CR (3/28) by 4-20 weeks
- CPG 7909 is well-tolerated
 - Mostly grade 1-2 injection site reactions or flu-like symptoms

Clinical trial in CTCL closed, sponsor focusing on approval thru lung cancer
Potential role of CPG 7909 in CTCL therapy

- Single-agent immunostimulator
- Adjuvant for vaccine therapy
- Effective agent in combination regimens with synergistic or response enhancing results
 - Chemotherapy or radiation (shown in mouse models)
 - PUVA
 - ECP, retinoids, monoclonal antibodies, HDAl, cytokine
- *In situ* vaccination therapy
 - Low-dose RT + intratumoral CPG

Ongoing clinical trial at Stanford
Acetylation Defects in Cancer

An Epigenetic Abnormality

<table>
<thead>
<tr>
<th>Disease</th>
<th>Acetylation Defect</th>
</tr>
</thead>
</table>
| **Leukemia** | HAT fusions
 MOZ/CBP
 MOZ/p300
 MOZ/TIF-2
 MLL/CBP
 MLL/p300
 HDAC mediated
 PML/RARalpha
 PLZF/RARalpha
 AML1 fusion |
| **Lymphoma** | BCL6
 STAT5 |
| **Epithelial cancers**| p300 mutations in colorectal, gastric, breast, pancreatic carcinomas/cancer cell lines |
| **Gastric Cancer** | Elevated expression of HDAC1 |
| **Prostate Cancer** | Elevated expression of HDAC1 |
| **Esophageal Cancer** | Elevated expression of HDAC1 |
Histone Acetylation/Deacetylation Regulates Transcription

Balanced HDAC and HAT activity = Normal cell cycle

HDACs + Lys \rightarrow Ac-Lys → HATs → Nucleosome → DNA

Ac=acetyl group; HAT=histone acetyltransferase; HDAC=histone deacetylase; Lys=lysine.

Adapted from Richon VM. Mechanism of Action of HDAC Inhibitor SAHA. Paper presented at 9th International Conference on Malignant Lymphoma; June 7, 2005; Lugano, Switzerland.
Mechanism of Growth Inhibition Mediated by HDAC Inhibition (Histone Hyperacetylation)

Deacetylated Histones

- Transcriptional Repression of Pre-Programmed Set of Genes
 - Cell Growth
 - Tumor Growth

Hyperacetylated Histones

- Transcriptional Activation of Pre-Programmed Set of Genes
 - Cell Growth Arrest, Differentiation and/or Apoptosis
 - Inhibition of Tumor Growth
Histone Deacetylase Inhibitors in Clinical Development

- **Short Chain Fatty Acids**
 - Butyrate, Phenylbutyrate, Valproate, AN-9

- **Hydroxamic Acids**
 - SAHA, LAQ-824, PXD101

- **Cyclic Tetrapeptides**
 - FK-228 (Depsipeptide)

- **Benzamides**
 - CI-994, MS-275

Phase IIb Multicenter Trial of Oral Suberoylanilide Hydroxamic Acid (SAHA: Vorinostat under review by FDA) in MF/SS

Phase II Multicenter Trial of Depsipeptide in MF/SS

Phase II Multicenter Trial of PXD101 in MF/SS
Purine Nucleoside Phosphorylase (PNP) Inhibitor
Forodesine HCl (BCX-1777) Activity in CTCL

• Profound suppression of T-cell immunity seen in patients with an inherited PNP deficiency

• Children with PNP deficiency have
 - < 5% of the normal PNP activity
 - Selective depletion of T-cells
 - T-cell responses to mitogenic and allogenic stimuli are severely compromised
 - Elevated levels of deoxyguanosine (dGuo) in urine and plasma
 - Elevated levels of dGTP in RBC

• Rationale for targeting PNP in therapeutics of T-cell disorders
Forodesine HCl (BCX-1777) is a potent selective transition-state analog inhibitor of human PNP.

- Inhibits the phosphorolysis of purine nucleosides such as 2’-deoxyguanosine (dGuo) to guanine + deoxyribose-1-phosphate => accumulation of dGTP results in alteration in the 2’deoxynucleotide (dNTP) pools leading to T-cell apoptosis.
Mechanism of T-cell Inhibition by PNP Inhibitor

PNP

\[
d\text{Guo} \quad \overset{\text{Kinase (dCK)}}{\longrightarrow} \text{guanine + deoxyribose-1-phosphate}
\]

\[
d\text{GTP} \quad \downarrow
\]

Alteration in deoxynucleotide pools

\[
\downarrow
\]

T-cell apoptosis
Purine Nucleoside Phosphorylase (PNP) Inhibitor
Forodesine HCl (BCX-1777) Activity in CTCL

• Initial good response data in 13 pts w/ 4 responses (3 CR), given IV forodesine

• Well-tolerated without dose-limiting toxicities in CTCL trial
 – Previously reported AEs: nausea, H/A, fatigue, pain, edema, anemia, infection, diarrhea, dec platelets, insomnia, cough

Phase I/II Multicenter Trial of an Oral Forodesine HCl
IMids, Novel Immunomodulators

Lenalidomide

4-amino-glutamyl analogue of thalidomide

Knight R, Semin Oncol 2005
IMids

Lenalidomide

Rationale for use in CTCL

- **T-cell co-stimulation**
 - \uparrow IFN-\(\gamma\), IL2
 - Selective stimulation of CD8 over CD4
 - Stimulate NK activity

- **Angiogenesis inhibition**

- **Cell cycle arrest and promotion of apoptosis**

- **FDA-approved in MM and MDS**

- **Pilot clinical study in MF/SS with observed responses**
 - *Multicenter study launching (NW, Stanford, MD Anderson)*
Other investigative immunotherapies in CTCL

• Gene delivery-based immunotherapy
 – Adenovirus-human IFN-γ cDNA

• Vaccine strategies
 – Transimmunization
 – Dendritic cell based immunization
 – Mimotope vaccines
 – Idiotype vaccines
Tumor Biopsy

Protein Production

TCR-Id Protein

Immunization With GM-CSF

"PCR Rescue"

plasmid

TCR-α, β

Protein Production

KLH Carrier protein

KLH

Id

TCR-Id Protein

Stanford’s preclinical showing response;
In development for human trials
Hematopoietic Stem Cell or BM Transplantation

Considered for patients with advanced disease (stage IIIB-IV)

Autologous \rightarrow High-dose chemo and RT (cytoreduction) followed by stem cell rescue
Avoid GVHD
No durable response in MF/SS

Allogeneic \rightarrow Cytoreduction + graft vs. tumor effect
Risk of GVHD
Increasing evidence of durable clinical, cytogenetic, molecular remissions in MF/SS

Molina A, J Clin Oncol, 2005
Wu, Stockerl-Goldstein, Lavori, Kim, SID 2006

Studies ongoing to maximize GVL effect while minimizing GVHD risk
Strategies in CTCL Treatment with Newer Options

Skin-directed Therapies
- Topicals
- Phototherapy
- XRT

Systemic Biologic Therapies
- IFN
- Retinoids
- ECP

Cytotoxic Chemotherapy
- Single-agent
- Combination

MF/SS IA-IIA
Primary
Salvage
Adjuvant
Primary
MF/SS IIB-IV

HDAI
TLRA
MoAb
PNPI
IMiD
HSCT
Therapeutic Advances

Newer Approaches
- Monoclonal antibodies
- HDAC Inhibitors
- PNP Inhibitors
- Recombinant cytokines
- TLR Agonists
- (CpG ODNs)
- New IMiDs
- (lenalidomide)
- Vaccine therapies
- Allogeneic HSCT

Improved QOL, closer toward a cure...
Handouts for Forum 506 available 8/1/06 at cutaneouslylymphoma.stanford.edu

or email younkim@stanford.edu

THANK YOU for thinking lymphoma today!